【題目】如圖,三棱柱中,側(cè)面,已知,,,點(diǎn)是棱的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請(qǐng)說明理由.
【答案】(1)證明見解析(2)(3)存在,或.
【解析】
(1)根據(jù)線面垂直的判定定理,即可證得平面.
(2)以為原點(diǎn),分別以,和的方向?yàn)?/span>,和軸的正方向建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解;
(3)假設(shè)存在點(diǎn),設(shè),根據(jù),得到的坐標(biāo),結(jié)合平面的法向量為列出方程,即可求解.
(1)由題意,因?yàn)?/span>,,,∴,
又∴,∴,
∵側(cè)面,∴.
又∵,,平面
∴直線平面.
(2)以為原點(diǎn),分別以,和的方向?yàn)?/span>,和軸的正方向建立如圖所示的空間直角坐標(biāo)系,
則有,,,,
設(shè)平面的一個(gè)法向量為
,
∵,∴,令,則,∴
設(shè)平面的一個(gè)法向量為,,,
∵,∴,令,則,∴,
,,,∴.
設(shè)二面角為,則.
∴設(shè)二面角的余弦值為.
(3)假設(shè)存在點(diǎn),設(shè),∵,,
∴,∴∴
設(shè)平面的一個(gè)法向量為,
∴,得.
即,∴或,∴或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義域?yàn)?/span>的函數(shù),如果存在區(qū)間,其中,同時(shí)滿足:
①在內(nèi)是單調(diào)函數(shù):②當(dāng)定義域?yàn)?/span>時(shí),的值域?yàn)?/span>,則稱函數(shù)是區(qū)間上的“保值函數(shù)”,區(qū)間稱為“保值函數(shù)”.
(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;
(2)若函數(shù)()是區(qū)間上的“保值函數(shù)”,求的取值范圍;
(3)對(duì)(2)中函數(shù),若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)O為極,z軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn).若直線與曲線C相交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,且圓過橢圓的上,下頂點(diǎn).
(1)求橢圓的方程.
(2)若直線的斜率為,且直線交橢圓于、兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線與的斜率之和是否為定值,如果是,請(qǐng)求出此定值:如果不是,請(qǐng)說明理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,,,為邊的中點(diǎn),沿將折起使得平面平面.
(1)求證:平面平面;
(2)求四棱錐的體積;
(3)求折后直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的組合體中,三棱柱的側(cè)面是圓柱的軸截面,是圓柱底面圓周上不與重合的一個(gè)點(diǎn).
(1)若圓柱的軸截面是正方形,當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),求異面直線與的所成角的大小;
(2)當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),求四棱錐與圓柱的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的兩個(gè)焦點(diǎn)為,,焦距為,直線:與橢圓相交于,兩點(diǎn),為弦的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線:與橢圓相交于不同的兩點(diǎn),,,若(為坐標(biāo)原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線:交于,兩點(diǎn),且的面積為16(為坐標(biāo)原點(diǎn)).
(1)求的方程.
(2)直線經(jīng)過的焦點(diǎn)且不與軸垂直,與交于,兩點(diǎn),若線段的垂直平分線與軸交于點(diǎn),試問在軸上是否存在點(diǎn),使為定值?若存在,求該定值及的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的底面是直角梯形,平面,,為中點(diǎn),且.
(1)求證:平面;
(2)若與底面所成角為,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com