【題目】已知在四邊形中,,,,.
(1)求的長及四邊形的面積;
(2)點(diǎn)為四邊形所在平面上一點(diǎn),若,求四邊形面積的最大值及此時(shí)點(diǎn)的位置.
【答案】(1);(2)四邊形面積的最大值為,此時(shí)且點(diǎn)與點(diǎn)分居于的兩側(cè)
【解析】
(1)設(shè),在中,由余弦定理,求得,在中,求得,根據(jù),故,即可求得,由四邊形,即可求得四邊形的面積;
(2)要使四邊形的面積最大,則點(diǎn)和點(diǎn)應(yīng)在的兩側(cè),且使得的面積最大,在中,根據(jù)余弦定理和均值不等式可得,結(jié)合三角形面積公式即可求得答案.
(1)設(shè),在中,
由余弦定理,得,
同理在中,.
,
,
即,解得.
,,
又,,
,,
四邊形
(2)要使四邊形的面積最大,則點(diǎn)和點(diǎn)應(yīng)在的兩側(cè),且使得的面積最大.
在中,,
,
當(dāng)且僅當(dāng)時(shí),等號成立,
即當(dāng)時(shí),.
又,
,
四邊形面積的最大值為,
此時(shí)為等邊三角形,即且點(diǎn)與點(diǎn)分居于的兩側(cè).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線過點(diǎn).
① 求實(shí)數(shù)的值;
② 設(shè)函數(shù),當(dāng)時(shí),試比較與的大;
(2)若函數(shù)有兩個(gè)極值點(diǎn),(),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,側(cè)面為正三角形,側(cè)面底面,為的中點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,新型冠狀病毒感染的肺炎疫情防控形勢嚴(yán)峻.口罩的市場需求一直居高不下.為了保障防疫物資供應(yīng),濰坊的口罩企業(yè)加足馬力保生產(chǎn),上演了一場與時(shí)間賽跑的“防疫阻擊戰(zhàn)”.濰坊市坊子區(qū)一家口罩生產(chǎn)企業(yè)擁有1000平方米潔凈車間,配備國際領(lǐng)先的自動化生產(chǎn)線5條,技術(shù)骨干20余人.自疫情發(fā)生以來,該企業(yè)積極響應(yīng)政府號召,保障每天生產(chǎn)一次性無紡布健康防護(hù)口罩5萬只左右.現(xiàn)從生產(chǎn)的大量口罩中抽取了100只作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,該項(xiàng)質(zhì)量指標(biāo)值落在區(qū)間[20,40)內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是樣本的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)企業(yè)將不合格品全部銷毀后,對合格品進(jìn)行等級細(xì)分:質(zhì)量指標(biāo)值落在區(qū)間[25,30)內(nèi)的定為一等品,每件售價(jià)2.4元;質(zhì)量指標(biāo)值落在區(qū)間[20,25)或[30,35)內(nèi)的定為二等品,每件售價(jià)為1.8元;其他的合格品定為三等品,每件售價(jià)為1.2元.
用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.若有一名顧客隨機(jī)購買2只口罩支付的費(fèi)用為X(單位:元).求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為, 的圖像關(guān)于軸對稱.
(1)求實(shí)數(shù), 的值.
(2)設(shè),則是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?/span>?若存在,求實(shí)數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為圓的圓心, 是圓上的動點(diǎn),點(diǎn)在圓的半徑上,且有點(diǎn)和上的點(diǎn),滿足, .
(1)當(dāng)點(diǎn)在圓上運(yùn)動時(shí),求點(diǎn)的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點(diǎn)的軌跡交于不同的兩點(diǎn), , 是坐標(biāo)原點(diǎn),且時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),曲線與軸交于兩點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線的普通方程及曲線的極坐標(biāo)方程;
(2)若直線與曲線在第一象限交于點(diǎn),且線段的中點(diǎn)為,點(diǎn)在曲線上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒子內(nèi)有3個(gè)不同的黑球,5個(gè)不同的白球.
(1)全部取出排成一列,3個(gè)黑球兩兩不相鄰的排法有多少種?
(2)從中任取6個(gè)球,白球的個(gè)數(shù)不比黑球個(gè)數(shù)少的取法有多少種?
(3)若取一個(gè)白球記2分,取一個(gè)黑球記1分,從中任取5個(gè)球,使總分不少于7分的取法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(0)及f(f(1))的值;
(2)求函數(shù)f(x)的解析式;
(3)若關(guān)于x的方程f(x)﹣m=0有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com