1.已知命題p:?x∈R,log3(3x+1)>0,則( 。
A.p是假命題;¬p:?x∈R,log3(3x+1)>0B.p是假命題;¬p:?x∈R,log3(3x+1)≤0
C.p是真命題;¬p:?x∈R,log3(3x+1)>0D.p是真命題;¬p:?x∈R,log3(3x+1)≤0

分析 判斷命題的真假,然后利用全稱(chēng)命題的否定是特稱(chēng)命題,寫(xiě)出結(jié)果即可.

解答 解:命題?x∈R,log3(3x+1)>0,顯然是真命題;
因?yàn)槿Q(chēng)命題的否定是特稱(chēng)命題,所以命題p:?x∈R,log3(3x+1)>0,p是真命題;
¬p:?x∈R,log3(3x+1)≤0.
故選:D.

點(diǎn)評(píng) 本題考查命題的否定,特稱(chēng)命題與全稱(chēng)命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.sin $\frac{13}{6}$π的值是( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P,Q是面對(duì)角線(xiàn)A1C1上的兩個(gè)不同的動(dòng)點(diǎn)(包括端點(diǎn)A1,C1).給出以下四個(gè)結(jié)論:
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP,DQ與直線(xiàn)B1C都成45°的角;
③若PQ=1,則四面體BDPQ的體積一定是定值;
④若PQ=1,則四面體BDPQ在該正方體六個(gè)面上的正投影的面積之和為定值.
以上各結(jié)論中,正確結(jié)論的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2},
(1)求a,b的值;
(2)求關(guān)于x的不等式bx2-ax-2>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知奇函數(shù)f(x)在區(qū)間[2,9]上是增函數(shù),在區(qū)間[3,8]上的最大值為9,最小值為2,則f(-8)-2f(-3)等于( 。
A.5B.-10C.10D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.現(xiàn)有2個(gè)男生,3個(gè)女生和1個(gè)老師共六人站成一排照相,若兩端站男生,3個(gè)女生中有且僅有兩人相鄰,則不同的站法種數(shù)是24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在三棱錐P-ABC中,PA⊥底面ABC,AD⊥平面PBC,其垂足D落在直線(xiàn)PB上.
(Ⅰ)求證:BC⊥PB;
(Ⅱ)若AD=$\sqrt{3}$,AB=BC=2,Q為AC的中點(diǎn),求PA的長(zhǎng)度以及二面角Q-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)+\sqrt{3}tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)$的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若實(shí)數(shù)a,b,c∈(0,1)且10a+9b=9,a+b+c=1,則當(dāng)$\frac{10}{a}+\frac{1}{9b}$取最小值時(shí),c的值為( 。
A.$\frac{5}{11}$B.$\frac{2}{11}$C.$\frac{1}{11}$D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案