15.已知集合U={0,1,2,3,4},M={0,4},N={2,4},則∁U(M∪N)={1,3}.

分析 直接由集合M,N求出M∪N,再由集合U,則可求出集合∁U(M∪N)的答案.

解答 解:由集合U={0,1,2,3,4},M={0,4},N={2,4},
得M∪N={0,4}∪{2,4}={0,2,4}.
則集合∁U(M∪N)={1,3}.
故答案為{1,3}.

點(diǎn)評(píng) 本題考查了交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}m{x^2}$+x在R上有極值,則m的取值范圍是{m|m>2或m<-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(理)“十一黃金周”期間三亞景區(qū)迎來了游客高峰期.游客小李從“大小洞天”到景區(qū)“天涯海角”景區(qū)有L1,L2兩條路線(如圖),路線L1上有A1,A2,A3三個(gè)風(fēng)景點(diǎn),各風(fēng)景點(diǎn)遇到堵塞的概率均為$\frac{2}{3}$;L2路線上有B1,B2兩個(gè)風(fēng)景點(diǎn),各風(fēng)景點(diǎn)遇到堵塞的概率依次為$\frac{3}{4}$,$\frac{3}{5}$.
(1)若走L1路線,求最多遇到1次堵塞的概率;
(2)按照“平均遇到堵塞次數(shù)最少”的要求,請(qǐng)你幫助小李從上述兩條路線中選擇一條最好的旅游路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.汽車租賃業(yè)被稱為“朝陽產(chǎn)業(yè)”,因?yàn)樗哂袩o須辦理保險(xiǎn)、無須年檢維修、車型可隨意更換等優(yōu)點(diǎn),以租車代替買車來控制陳本,正慢慢受到國(guó)內(nèi)企事業(yè)單位和個(gè)人用戶的青睞,可以滿足人民群眾個(gè)性化出行、商務(wù)活動(dòng)需求和保障重大社會(huì)活動(dòng).2013年國(guó)慶長(zhǎng)假期間某汽車租賃公司為了調(diào)查P、Q兩種車型的出租情況,現(xiàn)隨機(jī)抽取了這兩種車型各100輛,分別統(tǒng)計(jì)了每輛車某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如表:
P型車
出租天數(shù)1234567
車輛數(shù)51030351532
Q型車
出租天數(shù)1234567
車輛數(shù)1420201615105
(1)根據(jù)一周內(nèi)的統(tǒng)計(jì)數(shù)據(jù),預(yù)測(cè)該公司一輛P型車,一輛Q型車一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;
(2)如果兩種車型每輛車每天出租獲得的利潤(rùn)相同,該公司需要從P、Q兩種車型中購買一輛,請(qǐng)你給出建議應(yīng)該購買哪一種車型,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸.
(1)確定a與b的關(guān)系;
(2)若a≥0,試討論函數(shù)g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某班5名同學(xué)去參加3項(xiàng)不同活動(dòng),同一項(xiàng)活動(dòng)至少1人參加,則5人參加活動(dòng)的方案共有( 。┓N.
A.120B.130C.140D.150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f:N+→N+滿足:對(duì)于任意大于3的正整數(shù)n,f(n)=n-3,且當(dāng)n≤3時(shí),2≤f(n)≤3,則不同的函數(shù)f(x)的個(gè)數(shù)為(  )
A.3B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x=2a,則命題:“?y∈(0,+∞),xy=1”的否定為( 。
A.?y∈(0,+∞),xy≠1B.?y∈(-∞,0),xy=1C.?y∈(0,+∞),xy≠1D.?y∈(-∞,0),xy=1

查看答案和解析>>

同步練習(xí)冊(cè)答案