【題目】如圖,在四棱錐中, , , , 分別為的中點(diǎn).

(1)求證: 平面

(2)求證: 平面;

(3)若二面角的大小為,求四棱錐的體積.

【答案】(1)見(jiàn)解析(2) 見(jiàn)解析(3)

【解析】試題分析:1的中點(diǎn),根據(jù)題意易證四邊形為平行四邊形,所以,從而易證結(jié)論;(2)由 可得線(xiàn)面垂直;(3)由二面角的大小為,可得,求出底面直角梯形的面積,進(jìn)而可得四棱錐的體積.

試題解析:

(1)取的中點(diǎn),連接,

中點(diǎn),∴,由已知,

,∴四邊形為平行四邊形,

.又平面 平面,∴平面.

(2)連接,∵,∴,又,∴

, 中點(diǎn),∴,∴,∵,∴平面.

(3)取的中點(diǎn),連接.∴, ,

,∴,又, 的中點(diǎn),

,故為二面角的平面角.

,∵平面,∴

由已知,四邊形為直角梯形,∴,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)y=3sin(2x +

(1)求最小正周期、對(duì)稱(chēng)軸和對(duì)稱(chēng)中心;

(2)簡(jiǎn)述此函數(shù)圖象是怎樣由函數(shù)y=sinx的圖象作變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線(xiàn)段AB的兩個(gè)端點(diǎn)A、B分別在x軸和y軸上滑動(dòng),且∣AB∣=2

(1)求線(xiàn)段AB的中點(diǎn)P的軌跡C的方程;

(2)求過(guò)點(diǎn)M(1,2)且和軌跡C相切的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】名學(xué)生分成兩組參加城市綠化活動(dòng),其中組布置盆盆景, 組種植棵樹(shù)苗.根據(jù)歷年統(tǒng)計(jì),每名學(xué)生每小時(shí)能夠布置盆盆景或者種植棵樹(shù)苗.設(shè)布置盆景的學(xué)生有人,布置完盆景所需要的時(shí)間為,其余學(xué)生種植樹(shù)苗所需要的時(shí)間為(單位:小時(shí),可不為整數(shù)).

⑴寫(xiě)出、的解析式;

⑵比較、的大小,并寫(xiě)出這名學(xué)生完成總?cè)蝿?wù)的時(shí)間的解析式;

⑶應(yīng)怎樣分配學(xué)生,才能使得完成總?cè)蝿?wù)的時(shí)間最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A的坐標(biāo)為(4,1),點(diǎn)B(﹣7,﹣2)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)為C.
(Ⅰ)求以A、C為直徑的圓E的方程;
(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)A的直線(xiàn)l與圓E的另一個(gè)交點(diǎn)為D,|AD|=8,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)為5元,銷(xiāo)售單價(jià)與日均銷(xiāo)售量的關(guān)系如圖所示.

銷(xiāo)售單價(jià)/元

6

6.5

7

7.5

8

8.5

日均銷(xiāo)售量/桶

480

460

440

420

400

380

請(qǐng)根據(jù)以上數(shù)據(jù)作出分析,這個(gè)經(jīng)營(yíng)部怎樣定價(jià)才能獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)F的直線(xiàn)l交拋物線(xiàn)于點(diǎn)A,B,若以AB為直徑的圓過(guò)點(diǎn)P(﹣1,2),且與x軸交于M(m,0),N(n,0)兩點(diǎn),則mn=( )
A.3
B.2
C.﹣3
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是( )

A. 方程有實(shí)根函數(shù)有零點(diǎn)

B. 有兩個(gè)不同的實(shí)根

C. 函數(shù)上滿(mǎn)足,則內(nèi)有零點(diǎn)

D. 單調(diào)函數(shù)若有零點(diǎn),至多有一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,底面是梯形, .

(Ⅰ)求證:

(Ⅱ)若,點(diǎn)為線(xiàn)段的中點(diǎn).請(qǐng)?jiān)诰(xiàn)段上找一點(diǎn),使平面,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案