甲、乙兩人玩猜數(shù)字游戲,規(guī)則如下:
①連續(xù)競猜次,每次相互獨立;
②每次竟猜時,先由甲寫出一個數(shù)字,記為,再由乙猜測甲寫的數(shù)字,記為,已知,若,則本次競猜成功;
③在次競猜中,至少有次競猜成功,則兩人獲獎.
(Ⅰ) 求甲乙兩人玩此游戲獲獎的概率;
(Ⅱ)現(xiàn)從人組成的代表隊中選人參加此游戲,這人中有且僅有對雙胞胎,記選出的人中含有雙胞胎的對數(shù)為,求的分布列和期望.
(1)
(2)分布列為









試題分析:解:(Ⅰ)記事件為甲乙兩人一次競猜成功,則
則甲乙兩人獲獎的概率為

(Ⅱ)由題意可知6人中選取4人,雙胞胎的對數(shù)取值為0,1,2
,
∴分布列為









點評:主要是考查了古典概型概率和分布列的求解,屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某品牌的汽車4S店,對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結(jié)果如下表所示:
付款方式
分1期
分2期
分3期
分4期
分5期
頻數(shù)
40
20

10

已知分3期付款的頻率為0.2,4S店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元;分2期或3期付款,其利潤為1.5萬元;分4期或5期付款,其利潤為2萬元.用表示經(jīng)銷一輛汽車的利潤.
(1)求上表中的值;
(2)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有1位采用3期付款”的概率;(3)求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

選聘高校畢業(yè)生到村任職,是黨中央作出的一項重大決策,這對培養(yǎng)社會主義新農(nóng)村建設(shè)帶頭人、引導高校畢業(yè)生面向基層就業(yè)創(chuàng)業(yè),具有重大意義。為了響應國家號召,某大學決定從符合條件的6名(其中男生4人,女生2人)報名大學生中選擇3人,到某村參加村委會主任應聘考核。
(Ⅰ)設(shè)所選3人中女生人數(shù)為,求的分布列及數(shù)學期望;
(Ⅱ)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)進入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的.
(1)求進入商場的1位顧客購買甲、乙兩種商品中的一種的概率;
(2)求進入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(3)記ξ表示進入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)甲、乙等名同學參加某高校的自主招生面試,已知采用抽簽的方式隨機確定各考生的面試順序(序號為).
(Ⅰ)求甲、乙兩考生的面試序號至少有一個為奇數(shù)的概率;
(Ⅱ)記在甲、乙兩考生之間參加面試的考生人數(shù)為,求隨機變量的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

“肇實,正名芡實,因肇慶所產(chǎn)之芡實顆粒大、藥力強,故名!蹦晨蒲兴鶠檫M一步改良肇實,為此對肇實的兩個品種(分別稱為品種A和品種B)進行試驗.選取兩大片水塘,每大片水塘分成n小片水塘,在總共2n小片水塘中,隨機選n小片水塘種植品種A,另外n小片水塘種植B.
(1)假設(shè)n=4,在第一大片水塘中,種植品種A的小片水塘的數(shù)目記為,求的分布列和數(shù)學期望;
(2)試驗時每大片水塘分成8小片,即n=8,試驗結(jié)束后得到品種A和品種B在每個小片水塘上的每畝產(chǎn)量(單位:kg/畝)如下表:
 號碼
1
2
3
4
5
6
7
8
品種A
101
97
92
103
91
100
110
106
品種B
115
107
112
108
111
120
110
113
分別求品種A和品種B的每畝產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結(jié)果,你認為應該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

袋中裝有大小相同的2個白球和3個黑球.
(1)采取放回抽樣方式,從中依次摸出兩個球,求兩球顏色不同的概率;
(2)采取不放回抽樣方式,從中依次摸出兩個球,記為摸出兩球中白球的個數(shù),
的期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)某班從6名班干部中(男生4人,女生2人)選3人參加學校義務(wù)勞動;(1)求男生甲或女生乙被選中的概率;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率;
(3)設(shè)所選3人中女生人數(shù)為,求的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)隨機變量的分布列為等于  (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案