已知橢圓的中心為坐標原點,短軸長為2,一條準線的方程為l:x=2.
(1)求橢圓的標準方程.
(2)設(shè)O為坐標原點,F是橢圓的右焦點,點M是直線l上的動點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復(fù)習課時提升作業(yè)五十八第八章第九節(jié)練習卷(解析版) 題型:填空題
設(shè)直線l:2x+y-2=0與橢圓x2+=1的交點為A,B,點P是橢圓上的動點,則使得△PAB的面積為的點P的個數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復(fù)習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:解答題
給定橢圓C:+=1(a>b>0),稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為.
(1)求橢圓C的方程和其“準圓”的方程.
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線l1,l2使得l1,l2與橢圓C都只有一個交點,且l1,l2分別交其“準圓”于點M,N.
①當P為“準圓”與y軸正半軸的交點時,求l1,l2的方程;
②求證:|MN|為定值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復(fù)習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:填空題
與直線l:x+y-2=0和曲線x2+y2-12x-12y+54=0都相切的半徑最小的圓的標準方程是 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復(fù)習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:選擇題
若直線2x-y+a=0與圓(x-1)2+y2=1有公共點,則實數(shù)a的取值范圍是( )
(A)-2-<a<-2+
(B)-2-≤a≤-2+
(C)-≤a≤
(D)-<a<
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復(fù)習課時提升作業(yè)五十七第八章第八節(jié)練習卷(解析版) 題型:選擇題
已知雙曲線-y2=1(a>1)的一條準線為x=,則該雙曲線的離心率為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復(fù)習課時提升作業(yè)五十七第八章第八節(jié)練習卷(解析版) 題型:選擇題
已知M(-2,0),N(2,0),則以MN為斜邊的直角三角形的直角頂點P的軌跡方程為( )
(A)x2+y2=2 (B)x2+y2=4
(C)x2+y2=2(x≠±2) (D)x2+y2=4(x≠±2)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復(fù)習課時提升作業(yè)二十第三章第四節(jié)練習卷(解析版) 題型:解答題
已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期為2,且當x=時,f(x)的最大值為2.
(1)求f(x)的解析式.
(2)在閉區(qū)間[,]上是否存在f(x)的對稱軸?如果存在求出其對稱軸.若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復(fù)習課時提升作業(yè)二十六第四章第二節(jié)練習卷(解析版) 題型:選擇題
如圖,平面內(nèi)的兩條相交直線OP1和OP2將該平面分割成四個部分I,Ⅱ,Ⅲ,Ⅳ(不包含邊界).設(shè)=m+n,且點P落在第Ⅲ部分,則實數(shù)m,n滿足( )
(A)m>0,n>0(B)m>0,n<0
(C)m<0,n>0(D)m<0,n<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com