19.已知f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)的一條對稱軸為y軸,且θ∈(0,π),求θ=( 。
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

分析 利用輔助角將函數(shù)化為y=Asin(ωx+φ)的形式,根據(jù)一條對稱軸為y軸求解即可.

解答 解:由題意:f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)
化簡得:f(x)=2sin(x+θ$+\frac{π}{3}$)
∵一條對稱軸為y軸:
∴θ$+\frac{π}{3}$=$kπ+\frac{π}{2}$,(k∈Z)
解得:$θ=kπ+\frac{π}{6}$,
∵θ∈(0,π),
當(dāng)k=0時,θ=$\frac{π}{6}$.
故選A.

點(diǎn)評 本題主要考查三角函數(shù)的圖象和性質(zhì),利用輔助角公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)是奇函數(shù)的是( 。
A.y=xB.y=2x2-3C.y=$\sqrt{x}$D.y=x2,x∈[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.拋物線y2=4ax的準(zhǔn)線方程是x=-2,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+(y-1)2=5,直線l過定點(diǎn)P(1,1).
(1)求圓心C到直線l距離最大時的直線l的方程;
(2)若l與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若l與圓C交與不同兩點(diǎn)A、B,點(diǎn)P分弦AB為$\frac{AP}{PB}=\frac{1}{2}$,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)向量$\overrightarrow{a}$=(cosωx-sinωx,-1),$\overrightarrow$=(2sinωx,-1),其中ω>0,x∈R,已知函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的最小正周期為4π.
(1)求f(x)的對稱中心;
(2)若sinx0是關(guān)于t的方程2t2-t-1=0的根,且x0∈(-$\frac{π}{2}$,$\frac{π}{2}$),求f(x0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x=2n-1,n∈N*},B={y|y=5m+1,m∈N*},則集合A∩B中最小元素為(  )
A.1B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和Sn和通項an滿足2Sn+an=1,等差數(shù)列{bn}中,b1=1,b2=2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=an•bn,求證:c${\;}_{1}+{c}_{2}+{c}_{3}+…+{c}_{n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知某小學(xué)有90名三年級學(xué)生,將全體三年級學(xué)生隨機(jī)按00~89編號,并且編號順序平均分成9組,現(xiàn)要從中抽取9名學(xué)生,各組內(nèi)抽取的編號按依次增加10進(jìn)行系統(tǒng)抽樣.
(1)若抽出的一個號碼為30,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號碼;
(2)分別統(tǒng)計這9名學(xué)生的數(shù)學(xué)成績,獲得成績數(shù)據(jù)的莖葉圖如圖所示,從這9名學(xué)生中隨機(jī)抽取兩名成績不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績之和不小于154分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)a+$\frac{10}{a+i}$是純虛數(shù),則實(shí)數(shù)a的值是( 。
A.1B.-1C.3D.0

查看答案和解析>>

同步練習(xí)冊答案