【題目】已知集合A是函數(shù)y=lg(6+5x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集.p:x∈A,q:x∈B.
(1)若A∩B=,求a的取值范圍;
(2)若¬p是q的充分不必要條件,求a的取值范圍.

【答案】
(1)解:由條件得:A={x|﹣1<x<6},B={x|x≥1+a或x≤1﹣a},

若A∩B=φ,則必須滿足 ,

所以,a的取值范圍的取值范圍為:a≥5


(2)解:易得:p:x≥6或x≤﹣1,

∵p是q的充分不必要條件,

∴{x|x≥6或x≤﹣1}是B={x|x≥1+a或x≤1﹣a}的真子集,

,

∴a的取值范圍的取值范圍為:0<a≤2


【解析】(1)分別求函數(shù)y=lg(6+5x﹣x2)的定義域和不等式x2﹣2x+1﹣a2≥0(a>0)的解集化簡(jiǎn)集合A,由A∩B=得到區(qū)間端點(diǎn)值之間的關(guān)系,解不等式組得到a的取值范圍;(2)求出p對(duì)應(yīng)的x的取值范圍,由p是q的充分不必要條件得到對(duì)應(yīng)集合之間的關(guān)系,由區(qū)間端點(diǎn)值的關(guān)系列不等式組求解a的范圍.
【考點(diǎn)精析】通過靈活運(yùn)用集合的交集運(yùn)算,掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為參數(shù)).以O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求圓C的極坐標(biāo)方程;

2)直線的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為OP,與直線的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C:4x2﹣y2=4及直線l:y=kx﹣1
(1)求雙曲線C的漸近線方程及離心率;
(2)直線l與雙曲線C左右兩支各有一個(gè)公共點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AB|= ,|AF|<|BF|,則|AF|為(
A.1
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn表示等差數(shù)列{an}的前n項(xiàng)的和,且S4=S9 , a1=﹣12
(1)求數(shù)列的通項(xiàng)an及Sn;
(2)求和Tn=|a1|+|a2|+…+|an|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是從成都某中學(xué)參加高三體育考試的學(xué)生中抽出的40名學(xué)生體育成績(jī)(均為整數(shù))的頻率分布直方圖,該直方圖恰好缺少了成績(jī)?cè)趨^(qū)間[70,80)內(nèi)的圖形,根據(jù)圖形的信息,回答下列問題:
(1)求成績(jī)?cè)趨^(qū)間[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖,并估計(jì)這次考試的及格率(60分及以上為及格);
(2)從成績(jī)?cè)赱80,100]內(nèi)的學(xué)生中選出三人,記在90分以上(含90分)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣2,數(shù)列{bn}滿足b1=1,且bn+1=bn+2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log 的圖象關(guān)于原點(diǎn)對(duì)稱,其中a為常數(shù).
(1)求a的值;
(2)當(dāng)x∈(1,+∞)時(shí),f(x)+log (x+1)<m恒成立,求實(shí)數(shù)m的取值范圍;
(3)若關(guān)于x的方程f(x)=log (x+k)在[2,3]上有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二(4)班有男生28人,女生21人,用分層抽樣的方法從全班學(xué)生中抽取一個(gè)調(diào)查小組,調(diào)查該校學(xué)生對(duì)2013年1月1日起執(zhí)行的新交規(guī)的知曉情況,已知某男生被抽中的概率為 ,則抽取的女生人數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案