【題目】已知各項(xiàng)均為正數(shù)數(shù)列的前項(xiàng)和滿足.
(1)求數(shù)列的通項(xiàng)公式;;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
【答案】(1);(2).
【解析】試題分析:(1)由得,∴,于是可得,;(2)根據(jù)(1)求得,
∴,利用裂項(xiàng)相消法可求得數(shù)列的前項(xiàng)和.
試題解析:(1)∵,
∴.
又?jǐn)?shù)列各項(xiàng)均為正數(shù),
∴,∴,∴.
當(dāng)時(shí),;
當(dāng)時(shí),,
又∵也滿足上式,∴.
(2)據(jù)(1)求解,得,
∴.
∴數(shù)列的前項(xiàng)和
.
【方法點(diǎn)晴】本題主要考查等差數(shù)列的通項(xiàng)以及裂項(xiàng)相消法求數(shù)列的和,屬于中檔題. 裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1);(2) ; (3);(4) ;此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.
(1)求和的表達(dá)式,并求函數(shù)的值域
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)不等實(shí)根,求常數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直線2x-y+λ=0沿x軸向左平移1個(gè)單位,所得直線與圓x2+y2+2x-4y=0相切,則實(shí)數(shù)λ的值為( )
A.-3或7B.-2或8
C.0或10D.1或11
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,且(是常數(shù),),.
(1)求的值及數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),為橢圓的一個(gè)焦點(diǎn),離心率,過(guò)作兩條互相垂直的直線,, 與橢圓交于兩點(diǎn),與橢圓交于兩點(diǎn),且四點(diǎn)在橢圓上逆時(shí)針?lè)植?
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形面積的最大值與最小值的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,已知點(diǎn)A(1,0)和點(diǎn)B(﹣1,0),,且∠AOC=x,其中O為坐標(biāo)原點(diǎn).
(1)若x=,設(shè)點(diǎn)D為線段OA上的動(dòng)點(diǎn),求的最小值;
(2)若R,求的最大值及對(duì)應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的右準(zhǔn)線方程為,右頂點(diǎn)為.
求橢圓C的方程;
若M,N是橢圓C上不同于A的兩點(diǎn),點(diǎn)P是線段MN的中點(diǎn).
如圖1,若為等腰直角三角形且直角頂點(diǎn)P在x軸上方,求直線MN的方程;
如圖2所示,點(diǎn)Q是線段NA的中點(diǎn),若且的角平分線與x軸垂直,求直線AM的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩支球隊(duì)進(jìn)行總決賽,比賽采用七場(chǎng)四勝制,即若有一隊(duì)先勝四場(chǎng),則此隊(duì)為總冠軍,比賽就此結(jié)束.因兩隊(duì)實(shí)力相當(dāng),每場(chǎng)比賽兩隊(duì)獲勝的可能性均為.據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽可獲得門(mén)票收入40萬(wàn)元,以后每場(chǎng)比賽門(mén)票收入比上一場(chǎng)增加10萬(wàn)元.
(I)求總決賽中獲得門(mén)票總收入恰好為300萬(wàn)元的概率;
(II)設(shè)總決賽中獲得門(mén)票總收入為X,求X的均值E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線恒過(guò)定點(diǎn).
(Ⅰ)若直線經(jīng)過(guò)點(diǎn)且與直線垂直,求直線的方程;
(Ⅱ)若直線經(jīng)過(guò)點(diǎn)且坐標(biāo)原點(diǎn)到直線的距離等于3,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com