如圖,在五棱錐P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=,AB=2,BC=2AE=4,是等腰三角形.
(Ⅰ)求證:平面PCD⊥平面PAC;
(Ⅱ)求四棱錐P—ACDE的體積.
(Ⅰ)先證 (Ⅱ)
解析試題分析:(Ⅰ)證明:因為ABC=45°,AB=2,BC=4,所以在中,由余弦定理得:,解得,
所以,即,又PA⊥平面ABCDE,所以PA⊥,
又PA,所以,又AB∥CD,所以,又因為
,所以平面PCD⊥平面PAC;
(Ⅱ)由(Ⅰ)知,所以,又AC∥ED,所以四邊形ACDE是直角梯形,又容易求得,AC=,所以四邊形ACDE的面積為,所以四棱錐P—ACDE的體積為=.
考點:平面與平面垂直的判定;體積;空間中直線與平面之間的位置關(guān)系;直線與平面所成的角.
點評:本題主要考查空間中的基本關(guān)系,考查線面垂直、面面垂直的判定以及線面角和幾何體體積的計算,考查識圖能力、空間想象能力和邏輯推理能力.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱柱中, ,,,點是的中點,.
(Ⅰ)求證:∥平面;
(Ⅱ)設(shè)點在線段上,,且使直線和平面所成的角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱柱中,側(cè)棱底面,
(Ⅰ)求證:平面
(Ⅱ)若直線與平面所成角的正弦值為,求的值
(Ⅲ)現(xiàn)將與四棱柱形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式。(直接寫出答案,不必說明理由)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
正四棱錐中,,點M,N分別在PA,BD上,且.
(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面是邊長為2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分別為PB,PD的中點.
(1)證明:MN∥平面ABCD;
(2) 過點A作AQ⊥PC,垂足為點Q,求二面角A-MN-Q的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com