10.△ABC的三個(gè)內(nèi)角為A,B,C,若$\frac{{\sqrt{3}sinA+cosA}}{{\sqrt{3}cosA-sinA}}=tan\frac{5π}{12}$,則sin(B+C)=$\frac{\sqrt{2}}{2}$.

分析 依題意,可求得tan(A+$\frac{π}{6}$)=tan$\frac{5π}{12}$,從而可求得A=$\frac{π}{4}$,繼而可得答案.

解答 解:∵$\frac{\sqrt{3}sinA+cosA}{\sqrt{3}cosA-sinA}$=$\frac{2sin(A+\frac{π}{6})}{2cos(A+\frac{π}{6})}$=tan(A+$\frac{π}{6}$),
又$\frac{5π}{12}$=$\frac{π}{4}$+$\frac{π}{6}$,$\frac{{\sqrt{3}sinA+cosA}}{{\sqrt{3}cosA-sinA}}=tan\frac{5π}{12}$,A為△ABC的一個(gè)內(nèi)角,
∴A=$\frac{π}{4}$,
則sin(B+C)=sin(π-A)=sinA=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查輔助角公式的應(yīng)用,求得∠A=$\frac{π}{4}$是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=ax3+bx9+2在區(qū)間(0,+∞)上有最大值5,那么f(x)在(-∞,0)上的最小值為( 。
A.-5B.-1C.-3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知U=[-5,5],A=[-1,5),則∁UA=[-5,-1)∪{5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.運(yùn)行如圖程序框圖:

若輸出的S值為12,則判斷框中n的值可以是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)y=ln(x+1)(x≥0)的圖象繞坐標(biāo)原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)角θ(θ∈(0,α]),得到曲線C,若對于每一個(gè)旋轉(zhuǎn)角θ,曲線C都仍然是一個(gè)函數(shù)的圖象,則α的最大值為( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.x、y中至少有一個(gè)小于0是x+y<0的必要不充分條件.(充分不必要、必要不充分、充要、既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x-3)=f(x),當(dāng)f(x)=ln(x2-x+1),則函數(shù) f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=ax3+x2-bx+1,已知f(1)=0,則f(-1)=(  )
A.4B.2C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知sin(α+$\frac{π}{6}}$)=$\frac{4}{5}$,且α∈(0,$\frac{π}{3}$),則sinα的值是(  )
A.$-\frac{{2\sqrt{3}}}{5}$B.$\frac{{2\sqrt{3}}}{5}$C.$\frac{{4\sqrt{3}-3}}{10}$D.$\frac{{4\sqrt{3}+3}}{10}$

查看答案和解析>>

同步練習(xí)冊答案