已知函數(shù).
(1)若曲線的一條切線的斜率是2,求切點(diǎn)坐標(biāo);
(2)求在點(diǎn)處的切線方程.
(1),(2)
解析試題分析:(1)由導(dǎo)數(shù)的幾何意義知:在切點(diǎn)處的導(dǎo)數(shù)值等于切線的斜率,設(shè)切點(diǎn)為,由得:所以又因此切點(diǎn)坐標(biāo)為:,(2)由題意得為切點(diǎn),由得:切線的斜率等于在切點(diǎn)處的導(dǎo)數(shù)值,所以切線斜率為又所以由點(diǎn)斜式得切線方程:
試題解析:解:(1)設(shè)切點(diǎn)為,由得:所以又因此切點(diǎn)坐標(biāo)為:,(2)由題意得為切點(diǎn),由得:所以切線斜率為又所以
考點(diǎn):由導(dǎo)數(shù)求切點(diǎn)及切線方程
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),為常數(shù).
(1)若,求函數(shù)在上的值域;(為自然對(duì)數(shù)的底數(shù),)
(2)若函數(shù)在上為單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知..
(1)求函數(shù)在區(qū)間上的最小值;
(2)對(duì)一切實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍;
(3) 證明對(duì)一切, 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù) (R).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)g(x)="aln" x·f(x)=x3 +x2+bx
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實(shí)數(shù)b的范圍;
(2)若對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)b=0時(shí),設(shè)F(x)=,對(duì)任意給定的正實(shí)數(shù)a,曲線y=F(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),().
(1)若x=3是的極值點(diǎn),求在[1,a]上的最小值和最大值;
(2)若在時(shí)是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值;
(3)數(shù)列滿足,,求的整數(shù)部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是二次函數(shù),方程有兩個(gè)相等的實(shí)數(shù)根,且。
(1)求的表達(dá)式;
(2)若直線把的圖象與兩坐標(biāo)軸圍成的圖形面積二等分,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com