已知非零向量
a
,
b
夾角為θ,若
a
+
b
=(3,-6),
a
-
b
=(3,-2),則cosθ=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:首先求出向量a,b的坐標(biāo),再求它們的模和數(shù)量積,再由數(shù)量積的定義,即可得到夾角的余弦值.
解答: 解:由于
a
+
b
=(3,-6),
a
-
b
=(3,-2),
a
=(3,-4),
b
=(0,-2),
a
b
=3×0+(-4)×(-2)=8,|
a
|=
9+16
=5,|
b
|=2,
則有
a
b
=|
a
|•|
b
|•cosθ=10cosθ=8,
則cosθ=
4
5

故答案為:
4
5
點(diǎn)評(píng):本題考查向量的加減運(yùn)算和向量的數(shù)量積的定義和坐標(biāo)運(yùn)算,以及模的運(yùn)算,考查向量夾角的余弦值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x≤1或x≥3},B={x|m≤x<m+1},全集U=R,求所有滿足B⊆(∁UA)的m的值組成的集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線2ax-by+2=0(a>0,b>0)經(jīng)過圓x2+y2+2x-4y+1=0的圓心,則
1
a
+
1
b
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對(duì)任意x∈R,都有f(x+3)=-
1
f(x)
,且當(dāng)x∈[-3,-2]時(shí),f(x)=sin
πx
2
,則f(2014)=( 。
A、0
B、
1
2
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2cos2x+
3
sin2x+a,a∈R.
(1)若f(x)有最大值為2,求實(shí)數(shù)a的值;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a>c,已知
BA
BC
=-2,cosB=-
2
3
,b=
14
,求
(1)a和c的值;
(2)cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
1+cos(3π-θ)
2
2
<θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為(-4,0),(4,0),橢圓上一點(diǎn) P到兩個(gè)焦點(diǎn)的距離之和為10,則橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l與曲線C滿足下列兩個(gè)條件:(i)直線l在點(diǎn)P(x0,y0)處與曲線C相切;(ii)曲線C在點(diǎn)P附近位于直線l的兩側(cè),則稱直線l在點(diǎn)P處“切過”曲線C.下列命題正確的是
 
(寫出所有正確命題的編號(hào))
①直線l:y=0在點(diǎn)P(0,0)處“切過”曲線C:y=x3
②直線l:y=x-1在點(diǎn)P(1,0)處“切過”曲線C:y=lnx.
③直線l:y=-x+π在點(diǎn)P(π,0)處“切過”曲線C:y=sinx.
④直線l:y=x+1在點(diǎn)P(0,1)處“切過”曲線C:y=ex

查看答案和解析>>

同步練習(xí)冊(cè)答案