已知函數(shù)f(x)=sinx+acos2
x
2
,其中a為常數(shù),且x=
π
2
是函數(shù)f(x)的一個(gè)零點(diǎn).
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)當(dāng)x∈[0,π]時(shí),求函數(shù)f(x)的值域.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)利用函數(shù)的零點(diǎn)確定函數(shù)的解析式,進(jìn)一步求出函數(shù)的周期和單調(diào)區(qū)間.
(Ⅱ)利用(Ⅰ)的結(jié)論進(jìn)一步利用定義域確定函數(shù)的值域.
解答: 解:(Ⅰ)x=
π
2
是函數(shù)f(x)的一個(gè)零點(diǎn).
即x=
π
2
是方程f(x)=0的解.
f(
π
2
)=0
解得:a=-2.
所以:f(x)=sinx-2cos2
x
2
=
2
sin(x-
π
4
)-1
,
函數(shù)的周期為:T=2π,
令:-
π
2
+2kπ≤x-
π
4
π
2
+2kπ
(k∈Z),
解得:-
π
4
+2kπ≤x≤
4
+2kπ
,
所以:函數(shù)的遞增區(qū)間為:[-
π
4
+2kπ,
4
+2kπ
];
(Ⅱ)由于:0≤x≤π,
所以:-
π
4
≤x-
π
4
4
,
sin(x-
π
4
)∈[-
2
2
,1]

所以:-2≤f(x)≤
2
-1
,
函數(shù)的值域?yàn)椋篺(x)∈[-2,
2
-1
].
點(diǎn)評:本題考查的知識要點(diǎn):利用函數(shù)的零點(diǎn)確定函數(shù)的解析式,進(jìn)一步確定函數(shù)的周期和單調(diào)區(qū)間.進(jìn)一步根據(jù)函數(shù)的定義域求函數(shù)的值域.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=sin(2x+
π
6
)-cos(
3
-2x),x∈R.
(1)求函數(shù)最小正周期及單調(diào)區(qū)間;
(2)不畫圖,如何由y=sinx的圖象變得g(x)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn.等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,且b2+S2=12,a3=b3
(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
1
Sn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=ln
1
3x-a
過點(diǎn)M(1,b),且在點(diǎn)M處的切線與直線x-3y-2=0垂直.
(1)求a,b的值;
(2)求曲線在點(diǎn)M處的切線與兩坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=
1
2
;a1,a3,-a2成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若an+an+1≠0,求數(shù)列{nan}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在線段AB上任取一點(diǎn)P,以P為頂點(diǎn),B為焦點(diǎn)作拋物線,則該拋物線的準(zhǔn)線與線段AB有交點(diǎn)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
a≤x+y≤5
1≤2x-y≤5
,且z=2x+y的最小值為-1,則a=( 。
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
a
b
-1,其中向量
a
=(
3
sin2x,cosx),
b
=(1,2cosx)(x∈R).
(Ⅰ)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,f(A)=2,a=
7
,b=
3
,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)定義在R上的奇函數(shù),且x>0時(shí),f(x)=x-1
(1)求f(0);
(2)當(dāng)x<0時(shí),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案