【題目】設(shè)橢圓過點(diǎn)、.
(1)求橢圓的方程;
(2)、為橢圓的左、右焦點(diǎn),直線過與橢圓交于、兩點(diǎn),求△面積的最大值;
(3)求動點(diǎn)的軌跡方程,使得過點(diǎn)存在兩條互相垂直的直線、,且都與橢圓只有一個公共點(diǎn).
【答案】(1);(2);(3).
【解析】
(1)分別將、坐標(biāo)代入橢圓方程求出,即可;(2)設(shè),與橢圓方程聯(lián)立得,,所以,進(jìn)而利用基本不等式求出的最大值;(3)設(shè), ,切點(diǎn)為,, ,切點(diǎn)為, ,根據(jù)條件可得 ①,③,④,⑤,聯(lián)立以上式子求出的軌跡即可.
(1)將、坐標(biāo)代入得,解得,,所以橢圓方程為;
(2)設(shè),聯(lián)立,整理得,
所以,,
而,
所以,
則,當(dāng)且僅當(dāng)時取最大值;
(3)設(shè),,
切點(diǎn)為,,,切點(diǎn)為, ,
因?yàn)?/span>,所以①,
聯(lián)立,得,,
所以②,
且③,④,
聯(lián)立①③④可得⑤,
聯(lián)立①③④⑤,得,
所以的軌跡方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左、右焦點(diǎn)分別是,,點(diǎn)為的上頂點(diǎn),點(diǎn)在上,,且.
(1)求的方程;
(2)已知過原點(diǎn)的直線與橢圓交于,兩點(diǎn),垂直于的直線過且與橢圓交于,兩點(diǎn),若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),在圓:上任取一點(diǎn),的垂直平分線交于點(diǎn).(如圖).
(1)求點(diǎn)的軌跡方程;
(2)若過點(diǎn)的動直線與(1)中的軌跡相交于、兩點(diǎn).問:平面內(nèi)是否存在異于點(diǎn)的定點(diǎn),使得恒成立?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體中,面是直角梯形,,,面是菱形,,,.
(I)證明:;
(I)已知點(diǎn)在線段上,且,若二面角的大小為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,以原點(diǎn)0為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若曲線方程中的參數(shù)是,且與有且只有一個公共點(diǎn),求的普通方程;
(2)已知點(diǎn),若曲線方程中的參數(shù)是,,且與相交于,兩個不同點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足,其中數(shù)列的前項(xiàng)和,
(1)若數(shù)列是首項(xiàng)為.公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)若,求證:數(shù)列滿足,并寫出的通項(xiàng)公式;
(3)在(2)的條件下,設(shè),求證中任意一項(xiàng)總可以表示成該數(shù)列其它兩項(xiàng)之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn)A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上.
(1)求圓C的方程;
(2)已知直線l經(jīng)過(2,0)點(diǎn),并且被圓C截得的弦長為2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】西安市自2017年5月啟動對“車不讓人行為”處罰以來,斑馬線前機(jī)動車搶行不文明行為得以根本改變,斑馬線前禮讓行人也成為了一張新的西安“名片”.
但作為交通重要參與者的行人,闖紅燈通行卻頻有發(fā)生,帶來了較大的交通安全隱患及機(jī)動車通暢率降低,交警部門在某十字路口根據(jù)以往的檢測數(shù)據(jù),得到行人闖紅燈的概率約為0.4,并從穿越該路口的行人中隨機(jī)抽取了200人進(jìn)行調(diào)查,對是否存在闖紅燈情況得到列聯(lián)表如下:
30歲以下 | 30歲以上 | 合計(jì) | |
闖紅燈 | 60 | ||
未闖紅燈 | 80 | ||
合計(jì) | 200 |
近期,為了整頓“行人闖紅燈”這一不文明及項(xiàng)違法行為,交警部門在該十字路口試行了對闖紅燈行人進(jìn)行經(jīng)濟(jì)處罰,并從試行經(jīng)濟(jì)處罰后穿越該路口行人中隨機(jī)抽取了200人進(jìn)行調(diào)查,得到下表:
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
闖紅燈的人數(shù) | 50 | 40 | 20 | 0 |
將統(tǒng)計(jì)數(shù)據(jù)所得頻率代替概率,完成下列問題.
(Ⅰ)將列聯(lián)表填寫完整(不需寫出填寫過程),并根據(jù)表中數(shù)據(jù)分析,在未試行對闖紅燈行人進(jìn)行經(jīng)濟(jì)處罰前,是否有99.9%的把握認(rèn)為闖紅燈與年齡有關(guān);
(Ⅱ)當(dāng)處罰金額為10元時,行人闖紅燈的概率會比不進(jìn)行處罰降低多少;
(Ⅲ)結(jié)合調(diào)查結(jié)果,談?wù)勅绾沃卫硇腥岁J紅燈現(xiàn)象.
參考公式: ,其中
參考數(shù)據(jù):
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.132 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com