【題目】如圖,在四棱錐中,平面,且,,點(diǎn)G,H分別為邊的中點(diǎn),點(diǎn)M是線段上的動(dòng)點(diǎn).

1)求證:;

2)若,當(dāng)三棱錐的體積最大時(shí),求點(diǎn)C到平面的距離.

【答案】1)證明見解析(2

【解析】

1)連接,相交于點(diǎn)O.由垂直平分線性質(zhì)可得,由中位線定理可得,從而.再由平面,可得,所以平面,即可得.

2)根據(jù),,,可求得,進(jìn)而求得,由相似比與面積比關(guān)系求得,即可由等體積法求得.因而當(dāng)點(diǎn)M與點(diǎn)E重合時(shí)取得最大值.由線段關(guān)系求得,再根據(jù)等體積,即可求得點(diǎn)D到平面的距離.

1)證明:連接,相交于點(diǎn)O.如下圖所示:

平面.平面,

.

,,

為線段的垂直平分線.

.

G,H分別為,的中點(diǎn),

,

,

,,平面,

平面.

平面,

.

2)由(1)得,,.

,,,,

.

,.

的面積

,

G,H分別為,中點(diǎn),

.

平面.平面.

.

顯然,當(dāng)點(diǎn)M與點(diǎn)E重合時(shí),取得最大值,此時(shí).

連接,不難得出.

,.

又易知,

.

G中點(diǎn),

C到平面的距離等于D到平面的距離.

,

,.

∴點(diǎn)D到平面的距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y2+2x4y+30

1)若直線lx+y0與圓C交于AB兩點(diǎn),求弦AB的長;

2)從圓C外一點(diǎn)Px1,y1)向該圓引一條切線,切點(diǎn)為MO為坐標(biāo)原點(diǎn),且有|PM||PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購進(jìn)機(jī)器時(shí),可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購機(jī)時(shí)購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無需支付小費(fèi).現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)一次性購買幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺(tái)機(jī)器在維修上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的維修服務(wù)次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設(shè)這100臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買10次維修服務(wù),或每臺(tái)都購買11次維修服務(wù),分別計(jì)算這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺(tái)機(jī)器的同時(shí)應(yīng)購買10次還是11次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】地球海洋面積遠(yuǎn)遠(yuǎn)大于陸地面積,隨著社會(huì)的發(fā)展,科技的進(jìn)步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟(jì)利益,還擁有著深遠(yuǎn)的政治利益.聯(lián)合國于第63屆聯(lián)合國大會(huì)上將每年的68日確定為“世界海洋日”.201968日,某大學(xué)的行政主管部門從該大學(xué)隨機(jī)抽取100名大學(xué)生進(jìn)行一次海洋知識(shí)測試,并按測試成績(單位:分)分組如下:第一組[6570),第二組[70,75),第二組[75,80),第四組[80,85),第五組[85,90],得到頻率分布直方圖如下圖:

1)求實(shí)數(shù)的值;

2)若從第四組、第五組的學(xué)生中按組用分層抽樣的方法抽取6名學(xué)生組成中國海洋實(shí)地考察小隊(duì),出發(fā)前,用簡單隨機(jī)抽樣方法從6人中抽取2人作為正、副隊(duì)長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓C的方程為,過點(diǎn)A的直線l與圓C相切,點(diǎn)P為圓C上的動(dòng)點(diǎn).

1)求直線l的方程;

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)與雙曲線的焦點(diǎn)重合,并且經(jīng)過點(diǎn).

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(II) 設(shè)橢圓C短軸的上頂點(diǎn)為P,直線不經(jīng)過P點(diǎn)且與相交于、兩點(diǎn),若直線PA與直線PB的斜率的和為,判斷直線是否過定點(diǎn),若是,求出這個(gè)定點(diǎn),否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的共有(

因?yàn)橹本是無限的,所以平面內(nèi)的一條直線就可以延伸到平面外去;

兩個(gè)平面有時(shí)只相交于一個(gè)公共點(diǎn);

分別在兩個(gè)相交平面內(nèi)的兩條直線如果相交,則交點(diǎn)只可能在兩個(gè)平面的交線上;

一條直線與三角形的兩邊都相交,則這條直線必在三角形所在的平面內(nèi);

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某口袋內(nèi)裝有一些除顏色不同之外其他均相同的紅球、白球和黑球,從中摸出1個(gè)球,摸出紅球的概率是0.42,摸出白球的概率是0.28,若紅球有21個(gè),則黑球有_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀以下案例,利用此案例的想法化簡

案例:考察恒等式左右兩邊的系數(shù).

因?yàn)橛疫?/span>,

所以,右邊的系數(shù)為,

而左邊的系數(shù)為,

所以

(2)求證:

查看答案和解析>>

同步練習(xí)冊答案