已知a,b都是區(qū)間[0,4]內(nèi)任取的一個數(shù),那么函數(shù)f(x)=
1
3
x
3-ax2+b2x+2在x∈R上是增函數(shù)的概率是
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:這是一個幾何概型問題,我們可以先畫出a,b∈[0,4],對應(yīng)的平面區(qū)域的面積,然后再求出滿足條件函數(shù)f(x)在R上是增函數(shù)時對應(yīng)的平面區(qū)域的面積,計算出對應(yīng)的面積后,代入幾何概型公式即可得到答案.
解答: 解:f'(x)=x2-2ax+b2
若函數(shù)f(x)在R上是增函數(shù),則對于任意x∈R,f'(x)≥0恒成立.
所以,△=4a2-4b2≤0,即(a+b)(a-b)≤0
設(shè)“f(x)在R上是增函數(shù)”為事件A,則事件A對應(yīng)的區(qū)域為{(a,b)|(a+b)(a-b)≤0}
全部試驗結(jié)果構(gòu)成的區(qū)域{Ω=(a,b)|0≤a≤4,0≤b≤4},如圖.
所以函數(shù)f(x)在R上是增函數(shù)的概率是
1
2
×4×4
4×4
=
1
2

故答案為:
1
2
點評:這是一個幾何概型的概率題,本題的關(guān)鍵是找到事件對應(yīng)的區(qū)域和試驗的全部結(jié)果,根據(jù)幾何概型公式就可以算出結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對400個某種型號的電子元件進(jìn)行壽命追蹤調(diào)查,其頻率分布表如表:
壽命(h)頻率
5006000.10
6007000.15
7008000.40
8009000.20
90010000.15
合計1
(Ⅰ)在圖中補(bǔ)齊頻率分布直方圖;
(Ⅱ)估計元件壽命在500800h以內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(-∞,0)時,有xf′(x)<f(-x)成立.(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=
1
4
f(
1
4
),b=f(1),c=log2
1
4
f(log2
1
4
)則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、c>b>a
C、b>a>c
D、c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥1
x-2y≥-2
3x-2y≤3
,則z=x+2y的最大值是(  )
A、6
B、
17
2
C、7
D、
29
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC,在AB上取一點M,使AM=
1
3
AB,在AC上取一點N,使AN=
1
3
AC,在CM的延長線上取一點P,使MP=
1
2
CM,在BN的延長線上取一點Q,使NQ=
1
2
BN,試用向量的方法證明P、A、Q三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

頂點在原點,經(jīng)過圓C:x2+y2-2x+2
2
y=0的圓心且準(zhǔn)線與x軸垂直的拋物線方程為(  )
A、y2=-2x
B、y2=2x
C、y=
2
x2
D、y=-
2
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從數(shù)字1,2,3,4,5中,任意取出兩個數(shù)字,不是連續(xù)的自然數(shù)的概率是( 。
A、
2
5
B、
3
5
C、
3
10
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,y),
b
=(-1,2),且
a
+
b
=(1,3),則|
a
|等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,若a1,a2013為方程x2-10x+16=0兩根,則a2+a1007+a2012=(  )
A、10B、15C、20D、40

查看答案和解析>>

同步練習(xí)冊答案