已知函數(shù)f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期為T=6π,且f(2π)=2
(1)求ω和A的值;
(2)設(shè)α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
;求cos(α-β)的值.
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)通過函數(shù)的周期求出ω,利用f(2π)=2即可求出A的值;
(2)通過α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
;分別求出cosα,cosβ,sinα,sinβ,然后利用兩角和與差的三角函數(shù)直接求cos(α-β)的值.
解答: 解:(1)依題意得ω=
T
=
=
1
3

∴函數(shù)f(x)=Asin(
x
3
+
π
6
)     (2分)
由f(2π)=2得Asin(
3
+
π
6
)=2,
即 Asin
6
=2,
∴A=4          (4分)
∴函數(shù)f(x)=4sin(
x
3
+
π
6
)             (5分)
(2)由f(3α+π)=
16
5
,得4sin[
1
3
(3α+π)
+
π
6
]=
16
5

即4sin(α+
π
2
)=
16
5

∴cosα=
4
5
,(6分)
又∵α∈[0,
π
2
],∴sinα=
3
5
.(7分)
由f(3β+
2
)=-
20
13
得4sin[
1
3
(3β+
2
)
+
π
6
]=-
20
13
,即sin(β+π)=-
5
13

∴sinβ=
5
13
,(9分)
又∵β∈[0,
π
2
],
cosβ=
12
13
                       (10分)
cos(α-β)=cosαcosβ+sinαsinβ=
4
5
×
12
13
+
3
5
×
5
13
=
63
65
.(12分)
點(diǎn)評(píng):本題考查兩角和與差的三角函數(shù),函數(shù)的解析式的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(2,-1),
b
=(0,2),則以下向量中與
a
+
b
垂直的是( 。
A、(1,-2)
B、(1,2)
C、(2,1)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),已知AB=2,VA=VB=VC=2.
(1)求證:VO⊥平面ABC;
(2)求二面角V-AC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d<0,滿足S12>0,S13<0,求Sn達(dá)到最大值時(shí)對(duì)應(yīng)的項(xiàng)數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,O為總信號(hào)源點(diǎn),A,B,C是三個(gè)居民區(qū),已知A,B都在O的正東方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5
2
km.
(1)求居民區(qū)A與C的距離;
(2)現(xiàn)要經(jīng)過點(diǎn)O鋪設(shè)一條總光纜直線EF(E在直線OA的上方),并從A,B,C分別鋪設(shè)三條最短分光纜連接到總光纜EF.假設(shè)鋪設(shè)每條分光纜的費(fèi)用與其長(zhǎng)度的平方成正比,比例系數(shù)為m(m為常數(shù)).設(shè)∠AOE=θ(0≤θ<π),鋪設(shè)三條分光纜的總費(fèi)用為w(元).
①求w關(guān)于θ的函數(shù)表達(dá)式;
②求w的最小值及此時(shí)tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有16張不同的卡片,其中紅色、黃色、藍(lán)色、綠色卡片各4張.從中任取3張,要求這3張卡片不能是同一種顏色,且紅色卡片至多1張,求不同取法的種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是橢圓
x2
2
+y2=1上的兩點(diǎn),且
AF
FB
,其中F為橢圓的右焦點(diǎn).
(1)求實(shí)數(shù)λ的取值范圍;
(2)在x軸上是否存在一個(gè)定點(diǎn)M,使得
MA
MB
為定值?若存在,求出定值和定點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一組數(shù)據(jù)的頻率分布直方圖如圖所示.求眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知l1、l2是曲線C:y=
1
x
的兩條互相平行的切線,則l1與l2與的距離的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案