已知三角形ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,函數(shù)f(x)=
3
4
sin2x•(1+cos2C)-cos2x•sin2C+
11
16
的圖象過點(diǎn)(
π
6
,
1
2
)

(1)求sinC的值;
(2)當(dāng)a=2,2sinA=sinC時,求b、c邊的長.
分析:(1)把點(diǎn)(
π
6
1
2
)
 代入f(x)的解析式,解方程求得sinC 的值.
(2)由
a
sinA
=
c
sinC
,2sinA=sinC,可得c=4,根據(jù)sinC的值求得cosC的值,三角形ABC中,由余弦定理可得
16=4+b2-4bcosC,解方程求出b值.
解答:解:(1)把點(diǎn)(
π
6
,
1
2
)
 代入f(x)的解析式可得
1
2
=
3
4
3
2
•2cos2C-
3
4
•sin2C+
11
16
,
∴sinC=±
10
4

再由∠C 是△ABC的一個內(nèi)角可得 sinC=
10
4

(2)由
a
sinA
=
c
sinC
,2sinA=sinC,可得
2
sinA
c
sinC
,c=2a=4.
sinC=
10
4
,∴cosC=±
6
4
. 三角形ABC中,由余弦定理可得 16=4+b2-4bcosC   ①,
當(dāng)cosC=
6
4
 時,代入 ①解得 b=2
6
,或  b=-2
6
(舍去).
當(dāng)cosC=-
6
4
 時,代入 ①解得 b=
6
,或  b=-2
6
(舍去).
綜上,c=4,b=2
6
,或  b=
6
點(diǎn)評:本題考查正弦定理、余弦定理的應(yīng)用,同角三角函數(shù)的基本關(guān)系,體現(xiàn)了分類討論的數(shù)學(xué)思想,求出c=4,
是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△三角形ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,設(shè)B=2A,則
ba
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC中,a、b、c分別為角A、B、C的對邊,設(shè)向量
m
=(c-2b,a),
n
=(cosA,cosC)
,且
m
n

(1)求角A的大;
(2)若
AB
AC
=4
,求邊長a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南充一模)已知三角形ABC中,點(diǎn)D是BC的中點(diǎn),過點(diǎn)D的直線分別交直線AB,AC于E、F兩點(diǎn),若
AB
=λ
AE
(λ>0),
AC
AF
(μ>0),則
1
λ
+
4
μ
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC中,A,B,C對邊分別是a,b,c,若a,b,c,成等比數(shù)列,A=60°,則
bsinB
c
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC中,AB=3,BC=
13
,∠BAC=60
°,則AC的長為
4
4

查看答案和解析>>

同步練習(xí)冊答案