選修4-5:不等式選講
已知函數(shù)f(x)=log2(|x-1|+|x+2|-a).
(Ⅰ)當(dāng)a=7時(shí),求函數(shù)f(x)的定義域;
(Ⅱ)若關(guān)于x的不等式f(x)≥3的解集是R,求實(shí)數(shù)a的取值范圍.

解:(Ⅰ)由題設(shè)知:|x-1|+|x+2|>7,
不等式的解集是以下不等式組解集的并集:,或,或…(3分)
解得函數(shù)f(x)的定義域?yàn)椋?∞,-4)∪(3,+∞); …(5分)
(Ⅱ)不等式f(x)≥3,即|x-1|+|x+2|≥a+8,
∵x∈R時(shí),恒有|x-1|+|x+2|≥|(x-1)-(x+2)|=3,…(8分)
∵不等式|x-1|+|x+2|≥a+8解集是R,
∴a+8≤3,
∴a的取值范圍是(-∞,-5]. …(10分)
分析:(Ⅰ)由題意可得,|x-1|+|x+2|>7,故有:,或,或,把各個(gè)不等式組的解集取并集,即得所求.
(Ⅱ)由不等式可得|x-1|+|x+2|≥a+8恒成立,再由|x-1|+|x+2|的最小值等于3,故有a+8≤3,由此求得實(shí)數(shù)a的取值范圍.
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,函數(shù)的恒成立問(wèn)題,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講
設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講:
設(shè)正有理數(shù)x是
2
的一個(gè)近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2
;
(Ⅱ)比較y與x哪一個(gè)更接近于
2
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設(shè)函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案