(2011•南昌三模)若數(shù)列{an}滿足:a1=1,an+1=
1
2
an(n∈N*
),其前n項(xiàng)和為Sn,則
S4
a4
=
15
15
分析:由遞推關(guān)系式可知數(shù)列{an}是以1為首項(xiàng),
1
2
為公比的等比數(shù)列,從而可解.
解答:解:由題意,數(shù)列{an}是以1為首項(xiàng),
1
2
為公比的等比數(shù)列,
所以S4=
15
8
,a4=
1
8
,∴
S4
a4
=15
,
故答案為15.
點(diǎn)評:本題主要考查數(shù)列遞推式,考查等比數(shù)列的通項(xiàng)及前n項(xiàng)和公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南昌三模)f(x)=
x+3    (x≤1)
-x2+2x+3,(x>1)
,則函數(shù)g(x)=f(x)-ex則函數(shù)g(x)=f(x)-ex的零點(diǎn)個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南昌三模)若將(x-a)(x-b)逐項(xiàng)展開得x2-ax-bx+ab,則x2出現(xiàn)的概率為
1
4
,x出現(xiàn)的概率為
1
2
,如果將(x-a)(x-b)(x-c)(x-d)(x-e)逐項(xiàng)展開,那么x3出現(xiàn)的概率為
5
16
5
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南昌三模)設(shè)集合M={x|x>1},P={x|x>1,或x<-1},則下列關(guān)系中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南昌三模)已知函數(shù)y=f(x)滿足f(3x)=3f(x),當(dāng)1<x<3時,f(x)=1-|x-2|,那么x∈[1,3n],n∈N*時,函數(shù)y=f(x)的圖象與x軸所圍成的圖形面積為
9n-1
8
9n-1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南昌三模)已知數(shù)列{an}滿足a1=1,an=a1+
1
2
a2+
1
3
a3+…+
1
n-1
an-1(n>1)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)An為數(shù)列{
4an-1
4an
}
的前n項(xiàng)積,是否存在實(shí)數(shù)a,使得不等式An
4an+1
<a
對一切n∈N*都成立?若存在,求出的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案