若方程y2-x2lga=
1
3
-a表示焦點(diǎn)在x軸上的橢圓,則a的取值范圍是( 。
A、(0 , 
1
3
)
B、(
1
3
 , +∞)
C、(0 , 
1
10
)
D、(
1
10
 , 
1
3
)
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由方程y2-x2lga=
1
3
-a表示焦點(diǎn)在x軸上的橢圓得到不等式組
lga<0
1
3
-a>0
lga>-1
,求解不等式組得a的取值范圍.
解答: 解:要使方程y2-x2lga=
1
3
-a表示焦點(diǎn)在x軸上的橢圓,則
lga<0
1
3
-a>0
lga>-1
,解得
1
10
<a<
1
3

∴a的取值范圍是(
1
10
,
1
3
)

故答案為:D.
點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的簡(jiǎn)單幾何性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,且Sn+an=2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1=a1,bn=
3bn-1
bn-1+3
,n≥2 求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)設(shè)cn=
an
bn
,求數(shù)列{cn}的前n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,a1=-6,a3,a5,a6成等比數(shù)列且互不相等.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,k是整數(shù),若不等式Sn>an對(duì)一切n≥k的正整數(shù)n都成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在過點(diǎn)O(0,0)的直線l與曲線f(x)=x3-3x2+2x和y=x2+a都相切,則a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PA⊥平面ABC,∠ACB=90°且PA=AC=BC=1,則異面直線PB與AC所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex-ex+x-1
x2-x
(0<x<1),當(dāng)x∈(0,1)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個(gè)向量
m
,
n
滿足||
m
|=2,|
n
|=1,
m
,
n
的夾角為60°.
(Ⅰ)求向量
m
-
n
m
的夾角θ;
(Ⅱ)當(dāng)向量2λ
m
+7
n
與向量
m
+λ
n
垂直時(shí),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:1+
1
2
+
1
3
+…+
1
n
>ln(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)P(-2,0)且傾斜角為150°以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正方向?yàn)闃O軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程ρ2-2ρcosθ=15.
(Ⅰ)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)直線l交曲線C于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案