函數(shù)f(x)=sin(2x+
π
3
)的圖象向右平移
π
12
個(gè)單位后,再縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,所得圖象的函數(shù)解析式為
 
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
解答: 解:函數(shù)f(x)=sin(2x+
π
3
)的圖象向右平移
π
12
個(gè)單位后,縱坐標(biāo)不變,
可得函數(shù)y=sin[2(x-
π
12
)+
π
3
]=sin(2x+
π
6
).
再將其橫坐標(biāo)變?yōu)樵瓉淼?倍,所得圖象的函數(shù)解析式為y=sin(x+
π
6
),
故答案為:y=sin(x+
π
6
).
點(diǎn)評(píng):本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過點(diǎn)P(-2,1).
(Ⅰ)若直線l的方向向量為(-2,-3),求直線l的方程;
(Ⅱ)若直線l在兩坐標(biāo)軸上的截距相等,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,試求a,b的值,
(1)并求出f(x)的單調(diào)區(qū)間
(2)在區(qū)間[-2,2]上的最大值與最小值
(3)若關(guān)于x的方程f(x)=α有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值域:y=
3x-1
x+1
(x<1且x≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-2ax-1在[0,2]上的最小值為g(a),
(1)求g(a)的解析式;
(2)若0≤a≤3,求g(a)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A是△ABC的內(nèi)角且tanA=-2,則cosA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos420°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2]時(shí),f(x)=
x2-x
1
10
(x-2)
x∈[0,1)
x∈[1,2]
,若x∈[4,6]時(shí),f(x)≥t2-2t-4恒成立,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=1,且f(x)的導(dǎo)數(shù)f′(x)在R上恒有f′(x)<
1
2
,則不等式f(x)<
x
2
+
1
2
的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案