已知橢圓的離心率,長軸的左右端點分別為,.
(1)求橢圓的方程;
(2)設(shè)動直線與曲線有且只有一個公共點,且與直線相交于點.問在軸上是否存在定點,使得以為直徑的圓恒過定點,若存在,求出點坐標;若不存在,說明理由.
(1);(2)存在,
解析試題分析:(1)由已知,得,再根據(jù)離心率求,進而求,進而根據(jù)焦點位置求橢圓方程;(2)聯(lián)立直線方程和橢圓方程,得關(guān)于的一元二次方程,由題意,列方程得,同時可求出切點坐標,再求,設(shè)軸上存在滿足條件的點,以為直徑的圓恒過定點等價于,列方程得,由題意該方程與無關(guān),故,從而求得點坐標,本題還可以先從特殊值入手,確定定點的坐標,再證明以為直徑的圓恒過定點.
試題解析:(1)由已知 2分
,
橢圓的方程為; 4分
(2),消去,得,則,可得,設(shè)切點,則,,故,又由,得,設(shè)在上存在定點,使得以為直徑的圓恒過定點,,即 10分
,
對滿足恒成立,
,
故在軸上存在定點,使得以為直徑的圓恒過定點. 14分
考點:1、橢圓的標準方程;2、直線和橢圓的位置關(guān)系;3、向量垂直的充要條件.
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知定點F(1,0),點在軸上運動,點在軸上,點
為平面內(nèi)的動點,且滿足,.
(1)求動點的軌跡的方程;
(2)設(shè)點是直線:上任意一點,過點作軌跡的兩條切線,,切點分別為,,設(shè)切線,的斜率分別為,,直線的斜率為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左右焦點分別為、,短軸兩個端點為、,且四邊形是邊長為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)過右焦點作斜率為的直線交曲線于、兩點,且,又點關(guān)于原點的對稱點為點,試問、、、四點是否共圓?若共圓,求出圓心坐標和半徑;若不共圓,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓E:的離心率為,過左焦點且斜率為的直線交橢圓E于A,B兩點,線段AB的中點為M,直線:交橢圓E于C,D兩點.
(1)求橢圓E的方程;
(2)求證:點M在直線上;
(3)是否存在實數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的右焦點與拋物線的焦點重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且
(1)求橢圓的標準方程;
(2)設(shè)P為橢圓上一點,若過點M(2,0)的直線與橢圓相交于不同兩點A和B,且滿足(O為坐標原點),求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知命題:,命題:方程表示焦點在軸上的雙曲線.
(1)命題為真命題,求實數(shù)的取值范圍;
(2)若命題“”為真,命題“”為假,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓E:+y2=1(a>1)的上頂點為M(0,1),兩條過M的動弦MA、MB滿足MA⊥MB.
(1)當坐標原點到橢圓E的準線距離最短時,求橢圓E的方程;
(2)若Rt△MAB面積的最大值為,求a;
(3)對于給定的實數(shù)a(a>1),動直線AB是否經(jīng)過一定點?如果經(jīng)過,求出定點坐標(用a表示);反之,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com