10.已知a=0.40.4,b=1.20.4,c=log20.4,則a,b,c的大小關(guān)系為( 。
A.c<a<bB.c<b<aC.a<b<cD.a<c<b

分析 利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)求解.

解答 解:∵0<a=0.40.4<0.40=1,
b=1.20.4>20=1,
c=log20.4<log21=0,
∴a,b,c的大小關(guān)系為a<c<b.
故選:D.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若輸入的數(shù)字是“68”,則下列程序運(yùn)行后輸出的結(jié)果是86

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若θ是第一象限角,tanθ=$\frac{3}{4}$,則sinθ等于( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點(diǎn)A(1,1)和點(diǎn)B(-1,-3)在曲線C:y=ax3+bx2+d(a,b,d為常數(shù)),若曲線在點(diǎn)A和點(diǎn)B處的切線互相平行,則a+b+d=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a∈R,函數(shù)f(x)=x2-a|x-1|.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(2)當(dāng)a<0時(shí),討論y=f(x)的圖象與y=|x-a|的圖象的公共點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(2-a)^{2}(x<0)}\end{array}\right.$,其中a∈R,若對(duì)任意的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x1≠x2),使得f(x2)=f(x1)成立,則k的取值范圍為(  )
A.[-20,-4]B.[-30,-9]C.[-4,0]D.[-9,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=(e-1)x+4.
(1)求a,b的值;    
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量,$\overrightarrow{a}$=(1,m),$\overrightarrow$=(3,-2),且($\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow$,則m=(  )
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x>0,y>0且x+y=xy,則x+y的取值范圍是( 。
A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案