已知數(shù)列具有性質(zhì)P:對任意
兩數(shù)中至少有一個是該數(shù)列中的一項,現(xiàn)給出以下四個命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則
④若數(shù)列具有性質(zhì)P,則
其中真命題有
A.4個B.3個C.2個D.1個
B

分析:根據(jù)數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個是該數(shù)列中的一項,逐一驗證,可知①錯誤,其余都正確.
解:∵對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個是該數(shù)列中的項,
①數(shù)列0,1,3中,a2+a3=1+3=4和a3-a2=3-1=2都不是該數(shù)列中的數(shù),故①不正確;
②數(shù)列0,2,4,6,aj+ai與aj-ai(1≤i≤j≤3)兩數(shù)中都是該數(shù)列中的項,并且a4-a3=2是該數(shù)列中的項,故②正確;
③若數(shù)列A具有性質(zhì)P,則an+an=2an與an-an=0兩數(shù)中至少有一個是該數(shù)列中的一項,
∵0≤a1<a2<…<an,n≥3,
而2an不是該數(shù)列中的項,∴0是該數(shù)列中的項,
∴a1=0;故③正確;
④∵數(shù)列a1,a2,a3具有性質(zhì)P,0≤a1<a2<a3
∴a1+a3與a3-a1至少有一個是該數(shù)列中的一項,且a1=0,
1°若a1+a3是該數(shù)列中的一項,則a1+a3=a3,
∴a1=0,易知a2+a3不是該數(shù)列的項
∴a3-a2=a2,∴a1+a3=2a2
2°若a3-a1是該數(shù)列中的一項,則a3-a1=a1或a2或a3
①若a3-a1=a3同1°,
②若a3-a1=a2,則a3=a2,與a2<a3矛盾,
③a3-a1=a1,則a3=2a1
綜上a1+a3=2a2,
故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列滿足
(1) 證明:;
(2) 比較an­的大。
(3) 是否存在正實數(shù)c,使得,對一切恒成立?若存在,則求出c的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如果求證:成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知 求的關(guān)系式及通項公式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列的各項均為正數(shù),若對任意的正整數(shù),都有成等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求證數(shù)列是等差數(shù)列;
(Ⅱ)如果,求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

購買一件售價為5000元的商品,采用分期付款方法.每期付款數(shù)相同,購買后1個月付款一次,過1個月再付一次,如此下去,到第12次付款后全部付清.如果月利率為0.8%,每月利息按復利算(上月利息要計入下月本金),那么每期應付款多少(精確到1元)?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若數(shù)列滿足,,則此數(shù)列是                     
A.等差數(shù)列B.等比數(shù)列
C.既是等差數(shù)列又是等比數(shù)列D.既非等差數(shù)列又非等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

觀察下列等式:



……………………………………

可以推測,當x≥2(k∈N*)時,         ,ak-2=           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

數(shù)列中,已知,,若對任意正整數(shù),有,且,則該數(shù)列的前2010 項和                                              (   )
A..B..C..D..

查看答案和解析>>

同步練習冊答案