【題目】某電視臺推出一檔游戲類綜藝節(jié)目,選手面對1﹣5號五扇大門,依次按響門上的門鈴,門鈴會播放一段音樂,選手需正確回答這首歌的名字,回答正確,大門打開,并獲得相應的家庭夢想基金,回答每一扇門后,選手可自由選擇帶著目前的獎金離開,還是繼續(xù)挑戰(zhàn)后面的門以獲得更多的夢想基金,但是一旦回答錯誤,游戲結(jié)束并將之前獲得的所有夢想基金清零;整個游戲過程中,選手有一次求助機會,選手可以詢問親友團成員以獲得正確答案. 1﹣5號門對應的家庭夢想基金依次為3000元、6000元、8000元、12000元、24000元(以上基金金額為打開大門后的累積金額,如第三扇大門打開,選手可獲基金總金額為8000元);設(shè)某選手正確回答每一扇門的歌曲名字的概率為pi(i=1,2,…,5),且pi= (i=1,2,…,5),親友團正確回答每一扇門的歌曲名字的概率均為 ,該選手正確回答每一扇門的歌名后選擇繼續(xù)挑戰(zhàn)后面的門的概率均為 ;
(1)求選手在第三扇門使用求助且最終獲得12000元家庭夢想基金的概率;
(2)若選手在整個游戲過程中不使用求助,且獲得的家庭夢想基金數(shù)額為X(元),求X的分布列和數(shù)學期望.

【答案】
(1)解:設(shè)事件“該選手回答正確第i扇門的歌曲名稱”為事件Ai,“使用求助回答正確歌曲名稱”為事件B,

事件“每一扇門回答正確后選擇繼續(xù)挑戰(zhàn)下一扇門”為事件C;則

, , …設(shè)事件“選手在第三扇門使用求助且最終獲得12000元家庭夢想基金”為事件A,則:

A=A1CA2C ×

∴選手在第三扇門使用求助且最終獲得12000元家庭夢想基金的概率為


(2)解:X的所有可能取值為:0,3000,6000,8000,12000,24000;

P(X=3000)=P(A1 )= ;

P(X=6000)=P(A1 CA2 )= × ×( 2= ;

P(X=8000)=P(A1 CA2 CA3 )=

P(X=12000)=P(A1 CA2 CA3 CA4 )=

P(X=24000)=P(A1 CA2 CA3 CA4 CA5)= ;

P(X=0)=P( )+P(A1C )+P(A1CA2C )+P(A1CA2CA3C )+P(A1CA2CA3CA4C )=

(或P(X=0)=1﹣(P(X=3000)+P(X=6000)+P(X=8000)+P(X=12000)+P(X=24000)

=1﹣ ).

∴X的分布列為:

X

0

3000

6000

8000

12000

24000

P

∴EX=0× +3000× +6000× +8000× +12000× +24000×

=1250+1000+500+250+250=3250(元)

∴選手獲得的家庭夢想基金數(shù)額為X的數(shù)學期望為3250(元)


【解析】(1)設(shè)事件“選手在第三扇門使用求助且最終獲得12000元家庭夢想基金”為事件A.利用獨立重復試驗求得概率.(2)寫出X的所有可能取值并求得其概率和分布列.
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關(guān)知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+ )﹣2cos2B的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)對定義域內(nèi)R內(nèi)的任意x都有f(x)=f(4﹣x),且當x≠2時,其導數(shù)f'(x)滿足xf'(x)>2f'(x),若2<a<4,則(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線上的一點,若二面角A﹣B1E﹣B的正弦值為 ,求CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a,b,c成等比數(shù)列,若sinB= ,cosB= ,則a+c的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高級中學共有900名學生,現(xiàn)用分層抽樣的方法從該校學 生中抽取1個容量為45的樣本,其中高一年級抽20人,高三年級抽10人,則該校高二年級學生人數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三角形ABC中,B(﹣1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求動點A的軌跡M的方程;
(Ⅱ)P為軌跡M上動點,△PBC的內(nèi)切圓面積為S1 , 外接圓面積為S2 , 當P在M上運動時,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 設(shè)函數(shù)g(n)= ,若bn=g(2n+4),n∈N* , 則數(shù)列{bn}的前n(n≥2)項和Sn等于

查看答案和解析>>

同步練習冊答案