5.已知集合A={x|log2x<4},集合B={x||x|≤2},則A∩B=( 。
A.(0,2]B.[0,2]C.[-2,2]D.(-2,2)

分析 求出A與B中不等式的解集分別確定出A與B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:log2x<4=log216,即0<x<16,
∴A=(0,16),
由B中不等式解得:-2≤x≤2,即B=[-2,2],
則A∩B=(0,2],
故選A.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=\sqrt{2}+\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)),M是C1上的動點,P點滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,P點的軌跡為曲線C2
(1)求C2的方程;
(2)在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,射線θ=$\frac{π}{4}$與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,圓O1和圓O2的半徑都是1,|O1O2|=4,過動點P分別作圓O1和圓O2的切線PM、PN(M、N為切點),使得|PM|=$\sqrt{2}$|PN|,試建立適當(dāng)平面直角坐標系,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)f(x)的解析式.
(1)已知f(1-x)=2x2-x+1,求f(x);
(2)已知一次函數(shù)f(x)滿足f(f(x))=4x-1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)Sn是等差數(shù)列{an}的前n項和,且S5<S6=S7>S8,則下列結(jié)論錯誤的是( 。
A.d<0B.a7=0
C.S${\;}_{{9}_{\;}}$>S5D.S6和S7均為Sn的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點A關(guān)于原點的對稱點為B,F(xiàn)為其右焦點,若AF⊥BF,設(shè)∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{4}$],則該橢圓離心率的最大值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知O為坐標原點,拋物線C:y2=nx(n>0)在第一象限內(nèi)的點P(2,t)到焦點的距離為$\frac{5}{2}$,C在點P處的切線交x軸于點Q,直線l1經(jīng)過點Q且垂直于x軸.
(1)求線段OQ的長;
(2)設(shè)不經(jīng)過點P和Q的動直線l2:x=my+b交C交點A和B,交l1于點E,若直線PA,PB的斜率依次成等差數(shù)列,試問:l2是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a.b.c.d成等比數(shù)列,且曲線y=x2-2x+3的頂點是(b,c),則a+d等于(  )
A.3B.2C.$\frac{9}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知奇函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),當(dāng)x>0時,f(x)=ln(|x-1|+1),則函數(shù)f(x)的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案