【題目】已知函數(shù)處取得極值.

(1)求實(shí)數(shù)的值;

(2)若,試討論的單調(diào)性.

【答案】(1);(2)上單調(diào)遞減,在上單調(diào)遞增.

【解析】

分析:(I)由題意,求得函數(shù)的導(dǎo)數(shù),又由題意得,即可求解實(shí)數(shù)的值;

(II)由(I)得,求得,求得的根,即可求解函數(shù)的單調(diào)區(qū)間.

詳解:(I)對(duì)f(x)求導(dǎo)得f'(x)=3ax2+ax,

因?yàn)?/span>f(x)在x=-處取得極值,所以f'(-)=0,

3a·+2·(-)==0,解得a=.

(II)由(I)得g(x)=()ex,故g'(x)=()ex+()ex=()ex

=x(x+1)(x+4)ex. g'(x)=0,解得x=0,x=-1x=-4.

當(dāng)x<-4時(shí),g' (x)<0,故g(x)為減函數(shù);

當(dāng)-4<x<-1時(shí),g'(x)>0,故g(x)為增函數(shù);

當(dāng)-1<x<0時(shí),g'(x)<0,故g(x)為減函數(shù);

當(dāng)x>0時(shí),g'(x)>0,故g(x)為增函數(shù).

綜上知,g(x)在(-,-4)和(-l,0)內(nèi)為減函數(shù),在(-4,-1)和(0,+∞)內(nèi)為增函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了提高學(xué)生的身體素質(zhì),決定組建學(xué)校足球隊(duì),學(xué)校為了解學(xué)生的身體素質(zhì),對(duì)他們的體重進(jìn)行了測(cè)量,將所得的數(shù)據(jù)整理后,畫(huà)出了頻率分布直方圖(如圖),已知圖中從左到右3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(1)求該校報(bào)名學(xué)生的總?cè)藬?shù);
(2)從報(bào)名的學(xué)生中任選3人,設(shè)X表示體重超過(guò)60kg的學(xué)生人數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣3|
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若不等式f(x)≤a(x+)的解集非空,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex·(a++lnx),其中aR.

(I)若曲線(xiàn)y=f(x)在x=1處的切線(xiàn)與直線(xiàn)y=-垂直,求a的值;

(II)當(dāng)a(0,ln2)時(shí),證明:f(x)存在極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種樹(shù)苗栽種時(shí)高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿(mǎn)足 f(n),其中,a,b為常數(shù),n∈N,f(0)A.已知栽種3年后該樹(shù)木的高度為栽種時(shí)高度的3倍.

1)栽種多少年后,該樹(shù)木的高度是栽種時(shí)高度的8倍;

2)該樹(shù)木在栽種后哪一年的增長(zhǎng)高度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中,,,是實(shí)數(shù)常數(shù),).

(1)若,函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng),求的值;

(2)若函數(shù)滿(mǎn)足條件(1),且對(duì)任意,總有,求的取值范圍;

(3)若,函數(shù)是奇函數(shù),,,且對(duì)任意時(shí),不等式恒成立,求負(fù)實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦3名男生,2名女生,B中學(xué)推薦了3名男生,4名女生,兩校推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后隊(duì)員的水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì)

1求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率.

2某場(chǎng)比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X得分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位,得到函數(shù)的圖象,則下列說(shuō)法正確的是( ).

A. B. 直線(xiàn)的圖象的一條對(duì)稱(chēng)軸

C. 的最小正周期為D. 為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為回饋顧客,某商場(chǎng)擬通過(guò)摸球兌獎(jiǎng)的方式對(duì)1000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.
(1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求:
①顧客所獲的獎(jiǎng)勵(lì)額為60元的概率;
②顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;
(2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案