|
|
下列函數(shù)為奇函數(shù)的是
|
[ ] |
A. |
2x-
|
B. |
x2sinx
|
C. |
2cosx+1
|
D. |
x2+2x
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
等差數(shù)列{an}的公差為2,若a2,a4,a8成等比數(shù)列,則{an}的前n項和Sn=
|
[ ] |
A. |
n(n+1)
|
B. |
n(n-1)
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,P是⊙O外一點,PA是切線,A為切點,割線PBC與⊙O相交與B,C,PC=2PA,D為PC的中點,AD的延長線交⊙O與點E.證明:
(Ⅰ)BE=EC
(Ⅱ)AD·BE=2PB2
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
直線l1和l2是圓x2+y2=2的兩條切線,若l1與l2的交點為(1,3),則l1與l2的夾角的正切值等于________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
函數(shù).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)a1=1,an-1=ln(an+1),證明:.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
對任意復(fù)數(shù)w1,w2,定義w1*w2=w1,其中是w2的共軛復(fù)數(shù),對任意復(fù)數(shù)z1,z2,z3,有如下四個命題:
①(z1+z2)*z3=(z1*z3)+(z2*z3)
②z1*(z2+z3)=(z1*z2)+(z1*z3)
③(z1*z2)*z3=z1*(z2*z3)
④z1*z2=z2*z1
則真命題的個數(shù)是
|
[ ] |
A. |
1
|
B. |
2
|
C. |
3
|
D. |
4
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
某車間20名工人年齡數(shù)據(jù)如下表:
(1)求這20名工人年齡的眾數(shù)與極差;
(2)以這十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)求這20名工人年齡的方差.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
若等比數(shù)列{an}的各項均為正數(shù),且a10a11+a9a12=2e5,則lna1+lna2+……+lna20=________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
若變量x,y滿足約束條件則z=3x+y的最小值為________.
|
|
|
查看答案和解析>>