【題目】給出以下命題:
①雙曲線的漸近線方程為y=±x;
②命題p:“x∈R,sinx+≥2”是真命題;
③已知線性回歸方程為=3+2x,當(dāng)變量x增加2個單位,其預(yù)報值平均增加4個單位;
④設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
⑤設(shè),則
則正確命題的序號為________(寫出所有正確命題的序號).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),若存在正實數(shù),使得對任意都有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列各隨機試驗的樣本空間:
(1)采用抽簽的方式,隨機選擇一名同學(xué),并記錄其性別;
(2)采用抽簽的方式,隨機選擇一名同學(xué),觀察其ABO血型;
(3)隨機選擇一個有兩個小孩的家庭,觀察兩個孩子的性別;
(4)射擊靶3次,觀察各次射擊中靶或脫靶情況;
(5)射擊靶3次,觀察中靶的次數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年某地初中畢業(yè)升學(xué)體育考試規(guī)定:考生必須參加長跑.擲實心球.1分鐘跳繩三項測試,三項測試各項20分,滿分60分.某學(xué)校在初三上學(xué)期開始時,為掌握全年級學(xué)生1分鐘跳繩情況,按照男女比例利用分層抽樣抽取了100名學(xué)生進行測試,其中女生54人,得到下面的頻率分布直方圖,計分規(guī)則如表1:
(1)規(guī)定:學(xué)生1分鐘跳繩得分20分為優(yōu)秀,在抽取的100名學(xué)生中,男生跳繩個數(shù)大等于185個的有28人,根據(jù)已知條件完成表2,并根據(jù)這100名學(xué)生測試成績,能否有99%的把握認(rèn)為學(xué)生1分鐘跳繩成績優(yōu)秀與性別有關(guān)?
附:參考公式
臨界值表:
(2)根據(jù)往年經(jīng)驗,該校初三年級學(xué)生經(jīng)過一年的訓(xùn)練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步.假設(shè)今年正式測試時每人每分鐘跳繩個數(shù)比初三上學(xué)期開始時個數(shù)增加10個,全年級恰有2000名學(xué)生,所有學(xué)生的跳繩個數(shù)X服從正態(tài)分布N(μ,σ2)(用樣本數(shù)據(jù)的平值和方差估計總體的期望和方差,各組數(shù)據(jù)用中點值代替)
①估計正式測試時,1分鐘跳182個以上的人數(shù)(結(jié)果四舍五入到整數(shù));
②若在全年級所有學(xué)生中任意選取3人,正式測試時1分鐘跳195個以上的人數(shù)為ξ,求ξ占的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當(dāng)一次訂購量為多少個時,零件的實際出廠單價恰降為51元?
(2)設(shè)一次訂購量為個,零件的實際出廠單價為元.寫出函數(shù)的表達(dá)式;
(3)當(dāng)銷售商一次訂購500個零件時,該廠獲得的利潤是多少元?如果訂購1000個,利潤又是多少元?(工廠售出一個零件的利潤=實際出廠單價-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①函數(shù)的單調(diào)增區(qū)間是;
②若函數(shù)定義域為且滿足,則它的圖象關(guān)于軸對稱;
③函數(shù)的值域為;
④函數(shù)的圖象和直線的公共點個數(shù)是,則的值可能是;
⑤若函數(shù)在上有零點,則實數(shù)的取值范圍是.
其中正確的序號是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與軸交于點,與曲線交于點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對電子競技的興趣,從該校高二年級的學(xué)生中隨機抽取了人進行檢查,已知這人中有名男生對電子競技有興趣,而對電子競技沒興趣的學(xué)生人數(shù)與電子競技競技有興趣的女生人數(shù)一樣多,且女生中有的人對電子競技有興趣.
在被抽取的女生中與名高二班的學(xué)生,其中有名女生對電子產(chǎn)品競技有興趣,先從這名學(xué)生中隨機抽取人,求其中至少有人對電子競技有興趣的概率;
完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“電子競技的興趣與性別有關(guān)”.
有興趣 | 沒興趣 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考數(shù)據(jù):
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“楊輝三角”是我國數(shù)學(xué)史上的一個偉大成就,是二項式系數(shù)在三角形中的一種幾何排列.如圖所示,去除所有為1的項,依此構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前46項和為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com