如圖,平面平面,是正方形,,且,、、分別是線段、、的中點(diǎn).
(1)求證:平面;
(2)求異面直線、所成角的余弦值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,且各棱長均相等.D,E,F分別為棱AB,BC,A1C1的中點(diǎn).
(Ⅰ)證明EF//平面A1CD;
(Ⅱ)證明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直線BC與平面A1CD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
將棱長為的正方體截去一半(如圖甲所示)得到如圖乙所示的幾何體,點(diǎn)分別是的中點(diǎn).
(Ⅰ)證明:;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,PA=AB=4,G為PD的中點(diǎn),E是AB的中點(diǎn).
(Ⅰ)求證:AG∥平面PEC;
(Ⅱ)求點(diǎn)G到平面PEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點(diǎn),且2BE=EP.
(1)證明:AC⊥DE;
(2)若PC=BC,求二面角E-AC一P的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com