在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若a2-b2=bc,sinC=2sinB,則∠A的值為( )
A.
B.
C.
D.
【答案】分析:先利用正弦定理化簡sinC=2sinB,得到c與b的關(guān)系式,代入中得到a2與b2的關(guān)系式,然后利用余弦定理表示出cosA,把表示出的關(guān)系式分別代入即可求出cosA的值,根據(jù)A的范圍,利用特殊角的三角函數(shù)值即可求出A的值.
解答:解:由sinC=2sinB得:c=2b,
所以=•2b2,即a2=7b2
則cosA===,又A∈(0,π),
所以A=
故選A.
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用正弦定理、余弦定理及特殊角的三角函數(shù)值化簡求值,根據(jù)三角函數(shù)的值求角,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對邊長分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊答案