tan10°+tan50°+tan120°
tan10°•tan50°
的值應(yīng)是( 。
分析:把要求的式子化為
tan10°+tan50°
tan10°•tan50°
+
tan120°
tan10°•tan50°
,再利用兩角和的正切公式的變形公式化簡求得結(jié)果.
解答:解:
tan10°+tan50°+tan120°
tan10°•tan50°
=
tan10°+tan50°
tan10°•tan50°
+
tan120°
tan10°•tan50°
 
=
tan60°(1-tan10°tan50°)
tan10°•tan50°
-
tan60°
tan10°•tan50°
 
=
3
tan10°tan50°
-
3
-
3
tan10°tan50°
=-
3
,
故選C.
點評:本題主要考查兩角和的正切公式的變形應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、觀察下列幾個三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1;
③tan13°tan35°+tan35°tan42°+tan42°tan13°=1.
一般地,若tanα,tanβ,tanγ都有意義,你從這三個恒等式中猜想得到的一個結(jié)論為
當(dāng)α+β+γ=90°時,tanαtanβ+tanβtanγ+tanγtanα=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、觀察下列幾個三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan13°tan35°+tan35°tan42°+tan42°tan13°=1;
③tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1
④tan(-160)°tan(-22)°+tan(-22)°tan272°+tan272°tan(-160)°=1
一般地,若tanα,tanβ,tanγ都有意義,你從這四個恒等式中猜想得到的一個結(jié)論為
當(dāng)α+β+γ=90°時,tanαtanβ+tanβtanγ+tanγtanα=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察(1)tan10°tan20°+tan20°tan60°+tan60°tan10°=1
   (2)tan5°tan10°+tan10°tan75°+tan75°tan5°=1
由以上兩式成立,推廣到一般結(jié)論,寫出你的推論
若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1
若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列幾個三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1;
③tan13°tan35°+tan35°tan42°+tan42°tan13°=1.
一般地,若tanα,tanβ,tanγ都有意義,你從這三個恒等式中猜想得到的一個結(jié)論為
當(dāng)α+β+γ=90°時,tanαtanβ+tanβtanγ+tanγtanα=1
當(dāng)α+β+γ=90°時,tanαtanβ+tanβtanγ+tanγtanα=1
.試證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan10°+tan170°+sin1866°-sin(-606°)=( 。

查看答案和解析>>

同步練習(xí)冊答案