【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)
【答案】
(1)解:曲線C1的參數(shù)方程式 (t為參數(shù)),
得(x﹣4)2+(y﹣5)2=25即為圓C1的普通方程,
即x2+y2﹣8x﹣10y+16=0.
將x=ρcosθ,y=ρsinθ代入上式,得.
ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即為C1的極坐標(biāo)方程;
(2)解:曲線C2的極坐標(biāo)方程為ρ=2sinθ化為直角坐標(biāo)方程為:x2+y2﹣2y=0,
由 ,解得 或 .
∴C1與C2交點(diǎn)的極坐標(biāo)分別為( , ),(2, ).
【解析】(1)對(duì)于曲線C1利用三角函數(shù)的平方關(guān)系式sin2t+cos2t=1即可得到圓C1的普通方程;再利用極坐標(biāo)與直角坐標(biāo)的互化公式即可得到C1的極坐標(biāo)方程;(2)先求出曲線C2的極坐標(biāo)方程;再將兩圓的方程聯(lián)立求出其交點(diǎn)坐標(biāo),最后再利用極坐標(biāo)與直角坐標(biāo)的互化公式即可求出C1與C2交點(diǎn)的極坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫(huà)出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程=bx+a,
(3)試預(yù)測(cè)加工20個(gè)零件需要多少小時(shí)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,=(6,1),=(x,y),=(-2,-3),且∥.
(1)求x與y的關(guān)系式;
(2)若⊥,求x、y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,我校舉行傳統(tǒng)文化知識(shí)競(jìng)賽.其中兩位選手在個(gè)人追逐賽中的比賽得分如莖葉圖所示,則下列說(shuō)法正確的是( )
A. 甲的平均數(shù)大于乙的平均數(shù)
B. 甲的中位數(shù)大于乙的中位數(shù)
C. 甲的方差大于乙的方差
D. 甲的平均數(shù)等于乙的中位數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校乒乓球隊(duì)有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級(jí)情況如下表:
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加乒乓球比賽(每人被選到的可能性相同).
(1)用表中字母列舉出所有可能的結(jié)果;
(2)設(shè)M為事件“選出的2人來(lái)自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的參數(shù)方程為 (β為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1和曲線C2的極坐標(biāo)方程;
(2)已知射線l1:θ=α( <α< ),將射線l1順時(shí)針?lè)较蛐D(zhuǎn) 得到l2:θ=α﹣ ,且射線l1與曲線C1交于兩點(diǎn),射線l2與曲線C2交于O,Q兩點(diǎn),求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在最強(qiáng)大腦的舞臺(tái)上,為了與國(guó)際X戰(zhàn)隊(duì)PK,假設(shè)某季Dr.魏要從三名擅長(zhǎng)速算的選手A1,A2,A3,三名擅長(zhǎng)數(shù)獨(dú)的選手B1,B2,B3,兩名擅長(zhǎng)魔方的選手C1,C2中各選一名組成中國(guó)戰(zhàn)隊(duì).假定兩名魔方選手中更擅長(zhǎng)盲擰的選手C1已確定入選,而擅長(zhǎng)速算與數(shù)獨(dú)的選手入選的可能性相等.
(Ⅰ)求A1被選中的概率;
(Ⅱ)求A1,B1不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列, 公比為 為數(shù)列{an}的前n項(xiàng)和.
(1)若求;
(2)若調(diào)換的順序后能構(gòu)成一個(gè)等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù),使得對(duì)任意正整數(shù)n,不等式總成立?若存在,求出的范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知α,β是兩個(gè)不同的平面,m,n分別是平面α與平面β之外的兩條不同直線,給出四個(gè)論斷:
①m⊥n;②α⊥β;③n⊥β;④m⊥α.
以其中三個(gè)論斷作為條件,余下一個(gè)論斷作為結(jié)論,寫(xiě)出你認(rèn)為正確的一個(gè)命題:____.(用序號(hào)表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com