公比q不為1的等比數(shù)列{an}滿足an+2+an+1=2an(n∈N*),則q=
 
考點(diǎn):等比數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等比數(shù)列的通項(xiàng)公式建立條件關(guān)系即可得到結(jié)論.
解答: 解:在等比數(shù)列中,∵{an}滿足an+2+an+1=2an(n∈N*),
anq2+anq=2an
即q2+q-2=0,
解得q=-2或q=1(舍去),
故答案為:-2.
點(diǎn)評(píng):本題主要考查等比數(shù)列的通項(xiàng)公式的應(yīng)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)化簡(jiǎn):
sin2(α+π)•cos(π+α)•cot(-α-2π)
tan(π+α)•cos3(-α-π)

(2)已知sin(π+α)=
1
2
,求sin(2π-α)-cot(α-π)•cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)y=
1
2(x-2)2
+1在區(qū)間(2,+∞)內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx的圖象過(guò)點(diǎn)(-4n,0),且f′(0)=2n,n∈N*,數(shù)列{an}滿足
1
an+1
=f′(
1
an
)
,且a1=4,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)記bn=
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知∠BAC=α,AB=c,AC=b,如圖建立直角坐標(biāo)系,利用兩點(diǎn)間的距離公式計(jì)算BC2,并由此證明余弦定理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式sinx>-
1
2
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:∫xexdx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2,則函數(shù)f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=sin(ωx+φ)(ω>0,|φ|≤
π
2
)在區(qū)間[0,1]上是單調(diào)函數(shù),其圖象經(jīng)過(guò)P1(-1,0),P2(0,1),則此函數(shù)的最小正周期T及φ的值分別為( 。
A、T=4,φ=
π
2
B、T=4,φ=1
C、T=4π,φ=
π
2
D、T=4π,φ=-1

查看答案和解析>>

同步練習(xí)冊(cè)答案