精英家教網 > 高中數學 > 題目詳情

已知為數列的前項和,.

⑴求數列的通項公式;

⑵數列中是否存在正整數,使得不等式對任意不小于的正整數都成立?若存在,求最小的正整數,若不存在,說明理由.

⑵當時,恒成立,所求最小的正整數


解析:

⑴當時,

,且,是以為公差的等差數列,其首項為.

時,

時,,;

,得

時,恒成立,所求最小的正整數

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年華師一附中期中檢測理)(12分)

已知為數列的前項和,且N*)

(I)求證:數列為等比數列;

(II)設,求數列的前項和。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知為數列的前項和,;數列滿足:,,其前項和為(1) 求數列、的通項公式;(2) 若數列,設為數列的前項和,求使不等式都成立的最大正整數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知為數列的前項和,求下列數列的通項公式:

 ⑴ ;   ⑵.

查看答案和解析>>

科目:高中數學 來源: 題型:

⑴已知數列中,,求數列的通項公式;

⑵已知為數列的前項和,,求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省分校高三10月學習質量診斷文科數學試卷(解析版) 題型:解答題

(本題滿分15分)已知為數列的前項和,且,數列滿足,數列滿足.

(1)求數列的通項公式;

(2)求數列的前項和.

 

查看答案和解析>>

同步練習冊答案