△ABC中,sinA:sinB:sinC=4:7:8,則△ABC一定為( 。
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、等腰三角形
考點:三角形的形狀判斷,正弦定理,余弦定理
專題:解三角形
分析:根據(jù)正弦定理和余弦定理即可得到結(jié)論.
解答: 解:由正弦定理可得a:b:c=sinA:sinB:sinC=4:7:8,
設a=4x,b=7x,c=8x,x>0,則c邊最大,
由余弦定理可得cosC=
a2+b2-c2
2ab
=
16x2+49x2-64x2
2•4•7x2
=
1
56
>0,
則△ABC的最大角為銳角,
則△ABC是銳角三角形,
故選:A
點評:本題主要考查三角形形狀的判斷,根據(jù)正弦定理和余弦定理是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定義在[-3,3]上的函數(shù)y=f(x)是增函數(shù),若f(m+1)>f(2m-1),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=
m
x2+mx+1的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=x+
a
x
在[1,+∞)上單調(diào)遞增,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是橢圓
x2
4
+y2=1上的一點,F(xiàn)1、F2是焦點,且∠F1PF2=30°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}公差不為0,且a2a4a9成等比數(shù)列.a(chǎn)n的前項和為Sn且 S7=70.
(1)求{an}的通項公式
(2)若bn=
1
anan+1
求的前項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}定義如下:a1=1,且當n≥2時,an=
a
n
2
+1,n為偶數(shù)
1
an-1
,n為奇數(shù)
,若an=
19
11
,則正整數(shù)n=(  )
A、112B、114
C、116D、118

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

地平面上一旗桿OP,為測得它的高度h,在地平面上取一基線AB,AB=30m,在A處測得旗桿頂P點的仰角為θ且tanθ=
1
2
,在B處測得P點的仰角∠OBP=45°,又測得∠AOB=60°,求旗桿的高h.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2-a.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)對任意a≤-3,使得f(1)是函數(shù)f(x)的區(qū)間[1,b](b>1)上的最大值,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案