已知函數(shù), 數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)一切成立,求最小正整數(shù)m.

(1);(2)

解析試題分析:(1)由可知數(shù)列為等差數(shù)列,易求得通項(xiàng)公式;
(2)由第(1)的結(jié)果
所以可用拆項(xiàng)法求和進(jìn)而求得的最小值.
試題解析:解:(1)
是以為公差,首項(xiàng)的等差數(shù)列

(2)當(dāng)時(shí),
當(dāng)時(shí),上式同樣成立

對(duì)一切成立,
遞增,且

考點(diǎn):1、等差數(shù)列通項(xiàng)公式;2、拆項(xiàng)法求特列數(shù)列的前項(xiàng)和;3、含參數(shù)的不等式恒成立問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{}的前項(xiàng)和為,且滿足,
(1)求證:{}是等差數(shù)列;
(2)求表達(dá)式;
(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

的三個(gè)內(nèi)角成等差數(shù)列,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等差數(shù)列中,,前項(xiàng)和滿足條件,
(1)求數(shù)列的通項(xiàng)公式和;(2)記,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

將數(shù)列按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,并同時(shí)滿足以下兩個(gè)條件:①各行的第一
個(gè)數(shù)構(gòu)成公差為的等差數(shù)列;②從第二行起,每行各數(shù)按從左到右的順序都構(gòu)成公比為的等比數(shù)列.若,.

(1)求的值;
(2)求第行各數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的各項(xiàng)都為正數(shù),。
(1)若數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,求;
(2)若,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的等比數(shù)列中,
(1)求公比;
(2)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中, (為常數(shù),)且成公比不等于1的等比數(shù)列.
(1)求的值;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{}的首項(xiàng)為a.設(shè)數(shù)列的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n都有
(1)求數(shù)列{}的通項(xiàng)公式及Sn;
(2)是否存在正整數(shù)n和k,使得成等比數(shù)列?若存在,求出n和k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案