5.已知F為雙曲線C:2x2-my2=4m(m>0)的一個(gè)焦點(diǎn),則點(diǎn)F到C的一條漸近線的距離為2.

分析 求出雙曲線的標(biāo)準(zhǔn)方程,根據(jù)焦點(diǎn)在x軸上的雙曲線的焦點(diǎn)到漸近線的距離為b進(jìn)行求解即可.

解答 解:雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{2m}$-$\frac{{y}^{2}}{4}$=1,
雙曲線的焦點(diǎn)在x軸,則a2=2m,b2=4,
則b=2,
設(shè)焦點(diǎn)在x軸的雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1,
設(shè)焦點(diǎn)F(c,0),雙曲線的一條漸近線方程為y=$\frac{a}$x,即bx-ay=0
則點(diǎn)F到C的一條漸近線的距離d=$\frac{bc}{\sqrt{{a}^{2}+^{2}}}=\frac{bc}{c}=b$=2
故答案為:2

點(diǎn)評(píng) 本題主要考查雙曲線性質(zhì)的考查,利用焦點(diǎn)在x軸上的雙曲線的焦點(diǎn)到漸近線的距離為b進(jìn)行求解是解決本題的關(guān)鍵.如果直接根據(jù)定義進(jìn)行求解比較麻煩.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=ax2+ex(a∈R)有且僅有一個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(0,+∞)∪{-$\frac{e}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求證$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$;
(2)如圖,已知AB、CD相交于O,△ACO≌△BDO,AE=BF,證明:CE=FD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與冪函數(shù)y=$\sqrt{x}$的圖象相交于P,且過雙曲線C的左焦點(diǎn)F(-1,0)的直線與函數(shù)y=$\sqrt{x}$的圖象相切于P,則雙曲線C的離心率為(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線是3x-4y=0,則該雙曲線的離心率為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法中,正確的有( 。
①用反證法證明命題“a,b∈R,方程x3+ax+b=0至少有一個(gè)實(shí)根”時(shí),要作的假設(shè)是“方程至多有兩個(gè)實(shí)根”;
②用數(shù)學(xué)歸納法證明“1+2+22+…+2n+2=2n+3-1,在驗(yàn)證n=1時(shí),左邊的式子是1+2+22;
③用數(shù)學(xué)歸納法證明$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n∈N*)的過程中,由n=k推導(dǎo)到n=k+1時(shí),左邊增加的項(xiàng)為$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,沒有減少的項(xiàng);
④演繹推理的結(jié)論一定正確;
⑤要證明“$\sqrt{7}$-$\sqrt{3}$>$\sqrt{6}$-$\sqrt{2}$”的最合理的方法是分析法.
A.①④B.C.②③⑤D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)F是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一個(gè)焦點(diǎn),過點(diǎn)F且斜率為$\frac{{\sqrt{3}}}{3}$的直線l與圓x2+y2=a2相切,則雙曲線的離心率為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{5}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=3sin(2x+$\frac{π}{6}$)的單調(diào)增區(qū)間(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列命題中正確的是( 。
A.命題“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1<0”
B.若p為真命題,q為假命題,則(¬p)∨q為真命題
C.為了了解高考前高三學(xué)生每天的學(xué)習(xí)時(shí)間,現(xiàn)要用系統(tǒng)抽樣的方法從某班50個(gè)學(xué)生中抽取一個(gè)容量為10的樣本,已知50個(gè)學(xué)生的編號(hào)為1,2,3…50,若8號(hào)被選出,則18號(hào)也會(huì)被選出
D.已知m、n是兩條不同直線,α、β是兩個(gè)不同平面,α∩β=m,則“n?α,n⊥m”是“α⊥β”的充分條件

查看答案和解析>>

同步練習(xí)冊(cè)答案