已知點(diǎn)是雙曲線的左焦點(diǎn),點(diǎn)是該雙曲線的右頂點(diǎn),過且垂直于軸的直線與雙曲線交于、兩點(diǎn),若是銳角三角形,則該雙曲線的離心率的取值范圍是(   ).
A.B.C.D.
B

試題分析:根據(jù)雙曲線的對稱性,

得△ABE中,|AE|=|BE|,∴△ABE是銳角三角形,即∠AEB為銳角,由此可得Rt△AFE中,∠AEF<45°,得|AF|<|EF|,∵|AF|=,|EF|=a+c,∴<a+c,即2a2+ac-c2>0,兩邊都除以a2,得e2-e-2<0,解之得-1<e<2,∵雙曲線的離心率e>1,∴該雙曲線的離心率e的取值范圍是(1,2),故選B
點(diǎn)評:雙曲線過一個(gè)焦點(diǎn)的通徑與另一個(gè)頂點(diǎn)構(gòu)成銳角三角形,求雙曲線離心率的范圍,著重考查了雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓具有性質(zhì):若是橢圓為常數(shù)上關(guān)于原點(diǎn)對稱的兩點(diǎn),點(diǎn)是橢圓上的任意一點(diǎn),若直線的斜率都存在,并分別記為,那么之積是與點(diǎn)位置無關(guān)的定值
試對雙曲線為常數(shù)寫出類似的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線(a>0,b>0)的離心率是,則的最小值為  (    )
A.B.1C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已經(jīng)雙曲線x-my=m(m>0)的一條漸近線與直線2x-y+3=0垂直,則該雙曲線的準(zhǔn)線方程為
A.x=B.x=C.x=D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線方程為x-2y=1.則它的右焦點(diǎn)坐標(biāo)是(  )
A.(,0)B.(,0)C.(,0)D.(,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的中心為原點(diǎn),的焦點(diǎn),過的直線相交于兩點(diǎn),且的中點(diǎn)為,則的方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,

軸被拋物線截得的線段長等于的長半軸長.
(1)求的方程;
(2)設(shè)軸的交點(diǎn)為,過坐標(biāo)原點(diǎn)的直線
相交于兩點(diǎn),直線分別與相交于.   
①證明:為定值;
②記的面積為,試把表示成的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為,其中A(0,-b),B(a,0).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F是雙曲線的右焦點(diǎn),直線l過點(diǎn)F且與雙曲線的右支交于不同的兩點(diǎn)P、Q,點(diǎn)M為線段PQ的中點(diǎn).若點(diǎn)M在直線x=-2上的射影為N,滿足·=0,且||=10,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,軸截面為邊長為等邊三角形的圓錐,過底面圓周上任一點(diǎn)作一平面,且與底面所成二面角為,已知與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為(  )
A.  B.C.D.

查看答案和解析>>

同步練習(xí)冊答案