【題目】已知函數(shù)().
(1)討論函數(shù)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2)若, 恒成立,求的最大整數(shù)值.
【答案】(1)當(dāng)時(shí), 在上沒(méi)有極值點(diǎn);當(dāng)時(shí), 在上有一個(gè)極值點(diǎn).
(2)3.
【解析】試題分析:
(1)首先對(duì)函數(shù)求導(dǎo),然后分類討論可得當(dāng)時(shí), 在上沒(méi)有極值點(diǎn);當(dāng)時(shí), 在上有一個(gè)極值點(diǎn).
(2)結(jié)合題中所給的條件構(gòu)造新函數(shù)(),結(jié)合函數(shù)的性質(zhì)可得實(shí)數(shù)的最大整數(shù)值為3.
試題解析:
(1)的定義域?yàn)?/span>,且.
當(dāng)時(shí), 在上恒成立,函數(shù)在上單調(diào)遞減.
∴在上沒(méi)有極值點(diǎn);
當(dāng)時(shí),令得;
列表
所以當(dāng)時(shí), 取得極小值.
綜上,當(dāng)時(shí), 在上沒(méi)有極值點(diǎn);
當(dāng)時(shí), 在上有一個(gè)極值點(diǎn).
(2)對(duì), 恒成立等價(jià)于對(duì)恒成立,
設(shè)函數(shù)(),則(),
令函數(shù),則(),
當(dāng)時(shí), ,所以在上是增函數(shù),
又, ,
所以存在,使得,即,
且當(dāng)時(shí), ,即,故在在上單調(diào)遞減;
當(dāng)時(shí), ,即,故在上單調(diào)遞增;
所以當(dāng)時(shí), 有最小值,
由得,即,
所以,
所以,又,所以實(shí)數(shù)的最大整數(shù)值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①已知集合M滿足M{1,2,3},且M中至少有一個(gè)奇數(shù),這樣的集合M有6個(gè);
②已知函數(shù)f(x)= 的定義域是R,則實(shí)數(shù)a的取值范圍是(﹣12,0);
③函數(shù)f(x)=loga(x﹣3)+1(a>0且a≠1)圖象恒過(guò)定點(diǎn)(4,2);
④已知函數(shù)f(x)=x2+bx+c對(duì)任意實(shí)數(shù)t都有f(3+t)=f(3﹣t),則f(1)>f(4)>f(3).
其中正確的命題序號(hào)是(寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知橢圓的左焦點(diǎn)為,直線與橢圓交于不同兩點(diǎn),(都在軸上方),且.
(。┤,求的面積;
(ⅱ)直線是否恒過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計(jì)表:
(1)令,利用給出的參考數(shù)據(jù)求出關(guān)于的回歸方程.(,精確到0.1)
參考數(shù)據(jù):,,
其中,
(2)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量不高于20微克時(shí)對(duì)人體無(wú)害,為了放心食用該蔬菜,請(qǐng)估計(jì)至少需用用多少千克的清水清洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù))
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組, ,…, 后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問(wèn)題:
(1)補(bǔ)全頻率分布直方圖;
(2)估計(jì)本次考試的數(shù)學(xué)平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績(jī)中抽取一個(gè)容量為6的樣本,再?gòu)倪@6個(gè)樣本中任取2人成績(jī),求至多有1人成績(jī)?cè)诜謹(jǐn)?shù)段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱中,底面,底面是梯形,,,.
(1)求證:平面平面;
(2)在線段上是否存在一點(diǎn),使平面,若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年新高一學(xué)生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對(duì)新生進(jìn)行了素質(zhì)測(cè)查,隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績(jī)(均低于100分),其相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:
分?jǐn)?shù)段 | 頻數(shù) | 選擇題≥24分 |
5 | 2 | |
10 | 4 | |
15 | 12 | |
10 | 6 | |
5 | 4 | |
5 | 5 |
(1)若全區(qū)高一新生有5000人,試估計(jì)成績(jī)不低于60分的人數(shù);
(2)根據(jù)表格數(shù)據(jù)試估計(jì)全區(qū)新生數(shù)學(xué)的平均成績(jī)(同一分?jǐn)?shù)段的數(shù)據(jù)取該區(qū)間的中點(diǎn)值作為代表,如區(qū)間的中點(diǎn)值為75);
(3)從成績(jī)?cè)?/span>中抽取選擇題得分不低于24分的3名學(xué)生進(jìn)行具體分析,求至少有2名學(xué)生成績(jī)?cè)?/span>內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍
(3)若x∈[t,t+2],試求y=f(x)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com