若f(x)=
2
x
+
1
1-x
(0<x<1),則f(x)的最小值為
 
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)求出函數(shù)的最值,問題得以解決.
解答: 解:∵f(x)=
2
x
+
1
1-x
(0<x<1),
∴f′(x)=-
2
x2
+
1
(1-x)2

令f′(x)=0,解得x=2-
2

當(dāng)f′(x)>0時,即0<x<2-
2
時,函數(shù)遞增,
當(dāng)f′(x)<0時,即2-
2
<x<1時,函數(shù)遞減,
故當(dāng)x=2-
2
時函數(shù)有最小值,最小值為f(2-
2
)=
2
2-
2
+
1
2
-1
=3+2
2
,
故答案為:3+2
2
點評:本題主要考查了導(dǎo)數(shù)和最值得關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點P是△ABC所在平面外一點,AP,AB,AC兩兩垂直.求證:平面PAC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-mx+5,m∈R,它在(-∞,-2]上單調(diào)遞減,則f(1)的取值范圍是( 。
A、f(1)=15
B、f(1)>15
C、f(1)≤15
D、f(1)≥15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三次函數(shù)f(x)=
1
3
ax3-x2+x在(0,+∞)存在極大值點,則a的范圍是( 。
A、(0,1)
B、(0,1]
C、(-∞,0)
D、(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)0<x≤
1
2
時,4x<logax,則a的取值范圍是( 。
A、(
2
,2)
B、(1,
2
C、(
2
2
,1)
D、(0,
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖所示的程序框圖,那么輸出的S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、三點確定一個平面
B、四邊形一定是平面圖形
C、梯形一定是平面圖形
D、平面α和平面β有不同在一條直線上的三個公共點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個推導(dǎo)過程:
①∵a,b∈R+,∴(
b
a
)+(
a
b
)≥2
lgxlgy
=2;
②∵x,y∈R+,∴l(xiāng)gx+lgy≥2
lgxlgy

③∵a∈R,a≠0,∴(
4
a
)+a≥2
4
a
•a
=4;
④∵x,y∈R,xy<0,∴(
x
y
)+(
y
x
)=-[(-(
x
y
))+(-(
y
x
))]≤-2
(-
x
y
)(-
y
x
)
=-2.
其中正確的是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(λ,-2),
b
=(-3,5),若向量
a
b
的夾角為鈍角,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案