【題目】若函數和同時在處取得極小值,則稱和為一對“函數”.
(1)試判斷與是否是一對“函數”;
(2)若與是一對“函數”.
①求和的值;
②當時,若對于任意,恒有,求實數的取值范圍.
【答案】(1)與不是一對“P(1)函數”,詳見解析(2)①或.②
【解析】
(1)利用“函數”定義證明函數與不是一對“函數”;(2)①對a分a>0,a<0和a=0三種情況討論,利用“函數”的定義求出和的值;② 原命題等價于,構造函數求其最大值得解.
解:令.
(1)則,
因為與是一對“P(1)函數”
所以,所以.
此時,因,無極小值,
故與不是一對“P(1)函數”.
(2)①, ,
,,
若與是一對“函數”,
由,得,
1.若,則有
+ | 0 | - | 0 | + | |
↗ | 極大值 | ↘ | 極小值 | ↗ |
因為在處取得極小值,所以,
從而,
經驗證知在處取得極小值,所以,
2.當時,則有
+ | 0 | - | 0 | + | |
↗ | 極大值 | ↘ | 極小值 | ↗ |
因為在處取得極小值,所以;
從而,
令,
在是減函數,且,所以,從而
經驗證知在處取得極小值,所以
3.當時,,是增函數,無極小值,與題設不符.
綜上所述:或.
②因為,由①之結論知,,
易見,
故不等式等價于:,
令,則.
因為,所以單調遞減,
所以,從而.
科目:高中數學 來源: 題型:
【題目】已知橢圓.雙曲線的實軸頂點就是橢圓的焦點,雙曲線的焦距等于橢圓的長軸長.
(1)求雙曲線的標準方程;
(2)設直線經過點與橢圓交于兩點,求的面積的最大值;
(3)設直線(其中為整數)與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對40名小學六年級學生進行了問卷調查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過為“肥胖”.已知在全部40人中隨機抽取1人,抽到肥胖學生的概率為.
常喝 | 不常喝 | 合計 | |
肥胖 | 3 | ||
不肥胖 | 5 | ||
合計 | 40 |
(1)請將上面的列聯(lián)表補充完整;
(2)是否有的把握認為肥胖與常喝碳酸飲料有關?請說明你的理由.
參考公式:
①卡方統(tǒng)計量,其中為樣本容量;
②獨立性檢驗中的臨界值參考表:
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)如圖, 是圓的直徑,點是圓上異于的點, 垂直于圓所在的平面,且.
(Ⅰ)若為線段的中點,求證平面;
(Ⅱ)求三棱錐體積的最大值;
(Ⅲ)若,點在線段上,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點,右焦點是拋物線的焦點.
(1)求橢圓的方程;
(2)已知動直線過右焦點,且與橢圓分別交于,兩點.試問軸上是否存在定點,使得恒成立?若存在求出點的坐標:若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著經濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調整前后的計算方法如下表:
個人所得稅稅率表(調整前) | 個人所得稅稅率表(調整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數 | 全月應納稅所得額 | 稅率(%) | 級數 | 全月應納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應納的稅,試寫出調整前后關于的函數表達式;
(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數分布表:
收入(元) | ||||||
人數 | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調整后小紅的實際收入比調整前增加了多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.
(1)根據頻率分布直方圖計算圖中各小長方形的寬度;
(2)估計該公司投入4萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 1 | 3 | 4 | 7 |
表中的數據顯示,x與y之間存在線性相關關系,請將(2)的結果填入上表的空白欄,并計算y關于x的回歸方程.
回歸直線的斜率和截距的最小二乘法估計公式分別為,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,圓N與圓M關于直線對稱.
(1)求圓N的方程.
(2)是否存在過點P的無窮多對互相垂直的直線和,使得被圓M截得的弦長與被圓N截得的弦長相等?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com