【題目】設函數(shù)f(x)=ax2+(b﹣2)x+3(a≠0)
(1)若不等式f(x)>0的解集(﹣1,3).求a,b的值;
(2)若f(1)=2,a>0,b>0求 + 的最小值.
【答案】
(1)
解:由f(x)<0的解集是(﹣1,3)知﹣1,3是方程f(x)=0的兩根,由根與系數(shù)的關系可得 ,解得
(2)
解:f(1)=2得a+b=1,
∵a>0,b>0
∴(a+b)( + )=5+ =5+2 ≥9當且僅當b=2a時取得等號
∴ + 的最小值是9
【解析】(1)由不等式f(x)>0的解集(﹣1,3).﹣1,3是方程f(x)=0的兩根,由根與系數(shù)的關系可求a,b值;
【考點精析】認真審題,首先需要了解解一元二次不等式(求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊),還要掌握基本不等式(基本不等式:,(當且僅當時取到等號);變形公式:)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三角形△ABC的三邊長構成公差為2的等差數(shù)列,且最大角的正弦值為 ,則這個三角形的周長為( )
A.15
B.18
C.21
D.24
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義函數(shù) ,其中x為自變量,a為常數(shù). (I)若當x∈[0,2]時,函數(shù)fa(x)的最小值為一1,求a之值;
(II)設全集U=R,集A={x|f3(x)≥fa(0)},B={x|fa(x)+fa(2﹣x)=f2(2)},且(UA)∩B≠中,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為 .
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A、B兩點.
①若線段AB中點的橫坐標為﹣ ,求斜率k的值;
②若點M(﹣ ,0),求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|x|(2﹣x)
(1)作出函數(shù)f(x)的大致圖象,并指出其單調區(qū)間;
(2)若函數(shù)f(x)=c恰有三個不同的解,試確定實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某村投資128萬元建起了一處生態(tài)采摘園,預計在經(jīng)營過程中,第一年支出10萬元,以后每年支出都比上一年增加4萬元,從第一年起每年的銷售收入都為76萬元.設y表示前n(n∈N*)年的純利潤總和(利潤總和=經(jīng)營總收入﹣經(jīng)營總支出﹣投資).
(1)該生態(tài)園從第幾年開始盈利?
(2)該生態(tài)園前幾年的年平均利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產一種機器的固定成本為0.5萬元,但每生產1百臺時,又需可變成本(即另增加投入)0.25萬元.市場對此商品的年需求量為5百臺,銷售的收入(單位:萬元)函數(shù)為:R(x)=5x﹣ x2(0≤x≤5),其中x是產品生產的數(shù)量(單位:百臺).
(1)將利潤表示為產量的函數(shù);
(2)年產量是多少時,企業(yè)所得利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com