【題目】如圖所示,在四棱臺中,底面,四邊形為菱形,,.
(1)若為中點,求證:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)詳見解析;(2).
【解析】
試題(1)連接,可證 ,又因為底面,可得,即可得證.
(2)如圖建立空間直角坐標(biāo)系,求出和平面 的一個法向量的坐標(biāo),則直線與平面所成角的正弦值.
試題解析:
(Ⅰ)∵四邊形為菱形,,連結(jié),則為等邊三角形,
又∵為中點∴,由得∴
∵底面,底面∴,又∵
∴平面
(Ⅱ)∵四邊形為菱形,,,
得,,∴ 又∵底面,
分別以,,為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系
、、、
∴,,
設(shè)平面的一個法向量,
則有,令,則
∴直線與平面所成角的正弦值
.
點晴:本題考查的空間的線面關(guān)系以及空間的角.第一問通過證明直線和平面內(nèi)的兩條相交直線垂直,證明平面;第二問中通過建立空間直角坐標(biāo)系,求得和平面的一個法向量
,結(jié)合得到結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①命題“若,則”的否命題為“若,則”;
②“”是“”的必要不充分條件;
③命題“,使得”的否定是:“,均有”;
④命題“若,則”的逆否命題為真命題
其中所有正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點從坐標(biāo)原點出發(fā)沿著拋物線移動到點,則在移動過程中當(dāng)為最大時,點的橫坐標(biāo)________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)證明AB⊥平面VAD;
(Ⅱ)求面VAD與面VDB所成二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為a,分別是棱、的中點,過點的平面分別與棱、交于點,設(shè),,給出以下四個命題:
(1)平面與平面所成角的最大值為;
(2)四邊形的面積的最小值為;
(3)四棱錐的體積為;
(4)點到平面的距離的最大值為,
其中正確的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,且,四邊形滿足,為側(cè)棱上的任意一點.
(1)求證:平面平面.
(2)是否存在點,使得直線與平面垂直?若存在,寫出證明過程并求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點F與拋物線焦點重合,且橢圓的離心率為,過軸正半軸一點 且斜率為的直線交橢圓于兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在實數(shù)使以線段為直徑的圓經(jīng)過點,若存在,求出實數(shù)的值;若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O1與⊙O2交于P、Q兩點,⊙A的弦以與⊙O2相切,⊙O2的弦PB與⊙O1相切,直線PQ與△PAB的外接圓⊙O交于另一點R.證明:PQ=QR.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com