18.已知函數(shù)f(x)=3x-($\frac{1}{3}$)x,則f(x)( 。
A.是奇函數(shù),且在R上是增函數(shù)B.是偶函數(shù),且在R上是增函數(shù)
C.是奇函數(shù),且在R上是減函數(shù)D.是偶函數(shù),且在R上是減函數(shù)

分析 由已知得f(-x)=-f(x),即函數(shù)f(x)為奇函數(shù),由函數(shù)y=3x為增函數(shù),y=($\frac{1}{3}$)x為減函數(shù),結(jié)合“增”-“減”=“增”可得答案.

解答 解:f(x)=3x-($\frac{1}{3}$)x=3x-3-x,
∴f(-x)=3-x-3x=-f(x),
即函數(shù)f(x)為奇函數(shù),
又由函數(shù)y=3x為增函數(shù),y=($\frac{1}{3}$)x為減函數(shù),
故函數(shù)f(x)=3x-($\frac{1}{3}$)x為增函數(shù),
故選:A.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的奇偶性,函數(shù)的單調(diào)性,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合M={x||x-1|<1},N={x|x<2},則M∩N=( 。
A.(-1,1)B.(-1,2)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從分別寫有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$\overrightarrow{m}$,$\overrightarrow{n}$為非零向量,則“存在負(fù)數(shù)λ,使得$\overrightarrow{m}$=λ$\overrightarrow{n}$”是$\overrightarrow{m}$•$\overrightarrow{n}$<0”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow$=(3,m),且$\overrightarrow{a}⊥\overrightarrow$,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若復(fù)數(shù)z=log2(x2-3x-3)+ilog2(x-3)為實(shí)數(shù),則x的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若i為虛數(shù)單位,則$\frac{{1+{i^{2017}}}}{{{{(1-i)}^2}}}$的虛部為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若集合A={x|y=${x^{\frac{1}{2}}$},B={x|y=ln(x+1)},則A∩B=( 。
A.[0,+∞)B.(0,1)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.a(chǎn),b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當(dāng)直線AB與a成60°角時(shí),AB與b成30°角;
②當(dāng)直線AB與a成60°角時(shí),AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最小值為60°;
其中正確的是②③.(填寫所有正確結(jié)論的編號)

查看答案和解析>>

同步練習(xí)冊答案