18.已知角α的頂點在原點,始邊與x軸正半軸重合,點P(-4,3)是角α終邊上一點,則sinα+2cosα=-1.

分析 利用任意角的三角函數(shù)的定義求得sinα和cosα的值,可得sinα+2cosα的值.

解答 解:∵點P(-4,3)是角α終邊上一點,∴x=-4,y=3,r=|OP|=5,
∴sinα=$\frac{y}{r}$=$\frac{3}{5}$,cosα=$\frac{x}{r}$=-$\frac{4}{5}$,則sinα+2cosα=$\frac{3}{5}$-$\frac{8}{5}$=-1,
故答案為:-1.

點評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線l過點P(2,3)與以A(3,2),B(-1,-3)為端點的線段AB有公共點,則直線l傾斜角的取值范圍是$[arctan2,\frac{3π}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法正確的是(  )
A.若直線a與平面α內(nèi)無數(shù)條直線平行,則a∥α
B.經(jīng)過兩條異面直線中的一條,有一個平面與另一條直線平行
C.平行于同一平面的兩條直線平行
D.直線a,b共面,直線a,c共面,則直線b,c共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.當(dāng)$x∈[{-\frac{π}{4}\;,\;\;\frac{3π}{4}}]$時,函數(shù)y=arccos(sinx)的值域是[0,$\frac{3π}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,長為2,寬為1的矩形木塊,在桌面上作無滑動翻滾,翻滾到第三面后被一小木塊擋住,使木塊底與桌面成30°角,則點A走過的路程是$\frac{7}{6}π+\frac{\sqrt{5}}{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.關(guān)于函數(shù)f(x)=x•arcsinx有下列命題:
①f(x)的定義域是R;
②f(x)是偶函數(shù);
③f(x)在定義域內(nèi)是增函數(shù);
④f(x)的最大值是$\frac{π}{2}$,最小值是0,
其中正確的命題是②④.(寫出你所認(rèn)為正確的所有命題序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知sinθ=2cosθ,則tan2θ的值為-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)y=f(x)和y=g(x)在[-2,2]上的圖象如圖所示,給出下列四個選項同,其中不正確的是( 。
A.函數(shù)f[g(x)]的零點有且僅有6個B.函數(shù)g[f(x)]的零點有且僅有3個
C.函數(shù)f[f(x)]的零點有且僅有5個D.函數(shù)g[g(x)]的零點有且僅有4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.計算:${∫}_{1}^{2}$(ex-$\frac{1}{x}$)dx=e2-e-ln2.

查看答案和解析>>

同步練習(xí)冊答案