【題目】如圖,正方形所在平面與四邊形所在平面互相重直,是等腰直角三角形,,,.
(1)求證:平面;
(2)設(shè)線段、的中點(diǎn)分別為、,求與所成角的正弦值;
(3)求二面角的平面角的正切值.
【答案】(1)見解析;(2);(3).
【解析】
(1)證明,,然后證明平面;
(2)取的中點(diǎn),連接、,證明,說(shuō)明與所成角為或其補(bǔ)角,在,求解的正弦值即可;
(3)說(shuō)明為二面角的平面角.設(shè),則,在中與在中,求解二面角的平面角的正切值.
(1)因?yàn)樗倪呅?/span>為矩形,則,
因?yàn)槠矫?/span>平面,平面平面,平面,
平面,
平面,.
因?yàn)?/span>為等腰直角三角形,,所以,
又因?yàn)?/span>,,即,
,因此,平面;
(2)取的中點(diǎn),連接、,
四邊形為正方形,則且,
、分別為、的中點(diǎn),且,
為的中點(diǎn),且,且,
則四邊形為平行四邊形,,
所以與所成的角為或其補(bǔ)角,
由(1)知,平面,平面,,
設(shè),則,,,
在中,.
因此,與所成角的正弦值為;
(3),平面平面,平面平面,平面,平面.
作,交的延長(zhǎng)線于,則.從而,平面.
作于,連接,
平面,平面,,
,,平面,
平面,,所以,為二面角的平面角.
,,,,
設(shè),則,,,
在中,,,
在中,.
因此,二面角的平面角的正切值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計(jì)出這些試卷總分,由總分得到如下的頻率分別直方圖.
(1)求這100份數(shù)學(xué)試卷成績(jī)的中位數(shù);
(2)從總分在和的試卷中隨機(jī)抽取2份試卷,求抽取的2份試卷中至少有一份總分少于65分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,,均為正的常數(shù))的最小正周期為,當(dāng)時(shí),函數(shù)取得最小值,則下列結(jié)論正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績(jī)與物理成績(jī)如下表:
數(shù)據(jù)表明與之間有較強(qiáng)的線性關(guān)系.
(1)求關(guān)于的線性回歸方程;
(2)該班一名同學(xué)的數(shù)學(xué)成績(jī)?yōu)?10分,利用(1)中的回歸方程,估計(jì)該同學(xué)的物理成績(jī);
(3)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到125分為優(yōu)秀,物理成績(jī)達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為和,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):回歸直線的系數(shù),.
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)一年中有31天的月份的全體;
(2)大于小于12.8的整數(shù)的全體;
(3)梯形的全體構(gòu)成的集合;
(4)所有能被3整除的數(shù)的集合;
(5)方程的解組成的集合;
(6)不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位計(jì)劃建造一間背面靠墻的小屋,其地面面積為12m2,墻面的高度為3m,經(jīng)測(cè)算,屋頂?shù)脑靸r(jià)為5800元,房屋正面每平方米的造價(jià)為1200元,房屋側(cè)面每平方米的造價(jià)為800元,設(shè)房屋正面地面長(zhǎng)方形的邊長(zhǎng)為m,房屋背面和地面的費(fèi)用不計(jì).
(1)用含的表達(dá)式表示出房屋的總造價(jià);
(2)當(dāng)為多少時(shí),總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大連市某企業(yè)為確定下一年投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 573 | 6.8 | 289.8 | 1.6 | 215083.4 | 31280 |
表中,.
根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
根據(jù)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
已知這種產(chǎn)品的年利潤(rùn)與、的關(guān)系為.根據(jù)的結(jié)果回答下列問(wèn)題:
年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓的直徑,為圓心,,為半圓上的點(diǎn).
(Ⅰ)請(qǐng)你為點(diǎn)確定位置,使的周長(zhǎng)最大,并說(shuō)明理由;
(Ⅱ)已知,設(shè),當(dāng)為何值時(shí),
(。┧倪呅的周長(zhǎng)最大,最大值是多少?
(ⅱ)四邊形的面積最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)滿足,的虛部為2,
(1)求復(fù)數(shù);
(2)設(shè)在復(fù)平面上對(duì)應(yīng)點(diǎn)分別為,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com